Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Optimal Regret in Adversarial Linear MDPs with Bandit Feedback (2310.11550v1)

Published 17 Oct 2023 in cs.LG, cs.AI, and stat.ML

Abstract: We study online reinforcement learning in linear Markov decision processes with adversarial losses and bandit feedback, without prior knowledge on transitions or access to simulators. We introduce two algorithms that achieve improved regret performance compared to existing approaches. The first algorithm, although computationally inefficient, ensures a regret of $\widetilde{\mathcal{O}}\left(\sqrt{K}\right)$, where $K$ is the number of episodes. This is the first result with the optimal $K$ dependence in the considered setting. The second algorithm, which is based on the policy optimization framework, guarantees a regret of $\widetilde{\mathcal{O}}\left(K{\frac{3}{4}} \right)$ and is computationally efficient. Both our results significantly improve over the state-of-the-art: a computationally inefficient algorithm by Kong et al. [2023] with $\widetilde{\mathcal{O}}\left(K{\frac{4}{5}}+poly\left(\frac{1}{\lambda_{\min}}\right) \right)$ regret, for some problem-dependent constant $\lambda_{\min}$ that can be arbitrarily close to zero, and a computationally efficient algorithm by Sherman et al. [2023b] with $\widetilde{\mathcal{O}}\left(K{\frac{6}{7}} \right)$ regret.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haolin Liu (31 papers)
  2. Chen-Yu Wei (46 papers)
  3. Julian Zimmert (30 papers)
Citations (4)