Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Sentiment Analysis for Software Engineering in the Era of Large Language Models (2310.11113v3)

Published 17 Oct 2023 in cs.SE

Abstract: Software development involves collaborative interactions where stakeholders express opinions across various platforms. Recognizing the sentiments conveyed in these interactions is crucial for the effective development and ongoing maintenance of software systems. For software products, analyzing the sentiment of user feedback, e.g., reviews, comments, and forum posts can provide valuable insights into user satisfaction and areas for improvement. This can guide the development of future updates and features. However, accurately identifying sentiments in software engineering datasets remains challenging. This study investigates bigger LLMs (bLLMs) in addressing the labeled data shortage that hampers fine-tuned smaller LLMs (sLLMs) in software engineering tasks. We conduct a comprehensive empirical study using five established datasets to assess three open-source bLLMs in zero-shot and few-shot scenarios. Additionally, we compare them with fine-tuned sLLMs, using sLLMs to learn contextual embeddings of text from software platforms. Our experimental findings demonstrate that bLLMs exhibit state-of-the-art performance on datasets marked by limited training data and imbalanced distributions. bLLMs can also achieve excellent performance under a zero-shot setting. However, when ample training data is available or the dataset exhibits a more balanced distribution, fine-tuned sLLMs can still achieve superior results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.