Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torus quotients of Richardson varieties in $G_{r,qr+1}$ (2310.11091v1)

Published 17 Oct 2023 in math.AG, math.CO, and math.RT

Abstract: Let $r$ and $q$ be positive integers and $n=qr+1.$ Let $G = SL(n, \mathbb{C})$ and $T$ be a maximal torus of $G.$ Let $P{\alpha_r}$ be the maximal parabolic subgroup of $G$ corresponding to the simple root $\alpha_r.$ Let $\omega_r$ be the fundamental weight corresponding to $\alpha_r.$ Let $W$ be the Weyl group of $G$ and $W_{P{\alpha_r}}$ be the Weyl group of $P{\alpha_r}.$ Let $W{P{\alpha_r}}$ be the set of all minimal coset representatives of $W/W_{P{\alpha_r}}$ in $W.$ Let $w_{r,n}$ (respectively, $v_{r,n}$) be the minimal (respectively, maximal) element in $W{P{\alpha_{r}}}$ such that $w_{r,n}(n\omega_r) \leq 0$ (respectively, $v_{r,n}(n\omega_r) \geq 0$). Let $v \leq v_{r,n}$ and $Xv_{w_{r,n}}$ be the Richardson variety in $G_{r,n}$ corresponding to $v$ and $w_{r,n}.$ In this article, we give a sufficient condition on $v$ such that the GIT quotient of $X{v}{w{r,n}}$ for the action of $T$ is the product of projective spaces with respect to the descent of the line bundle $\mathcal{L}(n\omega_r).$

Summary

We haven't generated a summary for this paper yet.