Semantic Parsing by Large Language Models for Intricate Updating Strategies of Zero-Shot Dialogue State Tracking (2310.10520v3)
Abstract: Zero-shot Dialogue State Tracking (DST) addresses the challenge of acquiring and annotating task-oriented dialogues, which can be time-consuming and costly. However, DST extends beyond simple slot-filling and requires effective updating strategies for tracking dialogue state as conversations progress. In this paper, we propose ParsingDST, a new In-Context Learning (ICL) method, to introduce additional intricate updating strategies in zero-shot DST. Our approach reformulates the DST task by leveraging powerful LLMs and translating the original dialogue text to JSON through semantic parsing as an intermediate state. We also design a novel framework that includes more modules to ensure the effectiveness of updating strategies in the text-to-JSON process. Experimental results demonstrate that our approach outperforms existing zero-shot DST methods on MultiWOZ, exhibiting significant improvements in Joint Goal Accuracy (JGA) and slot accuracy compared to existing ICL methods. Our code has been released.
- Yuxiang Wu (27 papers)
- Guanting Dong (46 papers)
- Weiran Xu (58 papers)