Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Learning Patterns in Financial Time-Series for Trend-Following Strategies (2310.10500v2)

Published 16 Oct 2023 in q-fin.TR, cs.LG, and q-fin.PM

Abstract: Forecasting models for systematic trading strategies do not adapt quickly when financial market conditions rapidly change, as was seen in the advent of the COVID-19 pandemic in 2020, causing many forecasting models to take loss-making positions. To deal with such situations, we propose a novel time-series trend-following forecaster that can quickly adapt to new market conditions, referred to as regimes. We leverage recent developments from the deep learning community and use few-shot learning. We propose the Cross Attentive Time-Series Trend Network -- X-Trend -- which takes positions attending over a context set of financial time-series regimes. X-Trend transfers trends from similar patterns in the context set to make forecasts, then subsequently takes positions for a new distinct target regime. By quickly adapting to new financial regimes, X-Trend increases Sharpe ratio by 18.9% over a neural forecaster and 10-fold over a conventional Time-series Momentum strategy during the turbulent market period from 2018 to 2023. Our strategy recovers twice as quickly from the COVID-19 drawdown compared to the neural-forecaster. X-Trend can also take zero-shot positions on novel unseen financial assets obtaining a 5-fold Sharpe ratio increase versus a neural time-series trend forecaster over the same period. Furthermore, the cross-attention mechanism allows us to interpret the relationship between forecasts and patterns in the context set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.