Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Forking Uncertainties: Reliable Prediction and Model Predictive Control with Sequence Models via Conformal Risk Control (2310.10299v1)

Published 16 Oct 2023 in cs.IT, cs.AI, cs.LG, and math.IT

Abstract: In many real-world problems, predictions are leveraged to monitor and control cyber-physical systems, demanding guarantees on the satisfaction of reliability and safety requirements. However, predictions are inherently uncertain, and managing prediction uncertainty presents significant challenges in environments characterized by complex dynamics and forking trajectories. In this work, we assume access to a pre-designed probabilistic implicit or explicit sequence model, which may have been obtained using model-based or model-free methods. We introduce probabilistic time series-conformal risk prediction (PTS-CRC), a novel post-hoc calibration procedure that operates on the predictions produced by any pre-designed probabilistic forecaster to yield reliable error bars. In contrast to existing art, PTS-CRC produces predictive sets based on an ensemble of multiple prototype trajectories sampled from the sequence model, supporting the efficient representation of forking uncertainties. Furthermore, unlike the state of the art, PTS-CRC can satisfy reliability definitions beyond coverage. This property is leveraged to devise a novel model predictive control (MPC) framework that addresses open-loop and closed-loop control problems under general average constraints on the quality or safety of the control policy. We experimentally validate the performance of PTS-CRC prediction and control by studying a number of use cases in the context of wireless networking. Across all the considered tasks, PTS-CRC predictors are shown to provide more informative predictive sets, as well as safe control policies with larger returns.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 952–964, 2016.
  2. H. Wang, B. Lu, J. Li, T. Liu, Y. Xing, C. Lv, D. Cao, J. Li, J. Zhang, and E. Hashemi, “Risk assessment and mitigation in local path planning for autonomous vehicles with LSTM based predictive model,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2738–2749, 2021.
  3. J. Lee, R. Huang, A. Vaughn, X. Xiao, J. K. Hedrick, M. Zennaro, and R. Sengupta, “Strategies of path-planning for a UAV to track a ground vehicle,” in Proceedings of the 2nd annual Autonomous Intelligent Networks and Systems Conference, Menlo Park, CA, 2003.
  4. F. Vanegas, D. Campbell, N. Roy, K. J. Gaston, and F. Gonzalez, “UAV tracking and following a ground target under motion and localisation uncertainty,” in 2017 IEEE Aerospace Conference, pp. 1–10, IEEE, 2017.
  5. B. Li and Y. Wu, “Path planning for UAV ground target tracking via deep reinforcement learning,” IEEE access, vol. 8, pp. 29064–29074, 2020.
  6. S. Moon, H. Kim, and I. Hwang, “Deep learning-based channel estimation and tracking for millimeter-wave vehicular communications,” Journal of Communications and Networks, vol. 22, no. 3, pp. 177–184, 2020.
  7. S. H. Lim, S. Kim, B. Shim, and J. W. Choi, “Deep learning-based beam tracking for millimeter-wave communications under mobility,” IEEE Transactions on Communications, vol. 69, no. 11, pp. 7458–7469, 2021.
  8. V. Kunchev, L. Jain, V. Ivancevic, and A. Finn, “Path planning and obstacle avoidance for autonomous mobile robots: A review,” in Knowledge-Based Intelligent Information and Engineering Systems: 10th International Conference, KES 2006, Bournemouth, UK, October 9-11, 2006. Proceedings, Part II 10, pp. 537–544, Springer, 2006.
  9. T. Patterson, S. McClean, P. Morrow, G. Parr, and C. Luo, “Timely autonomous identification of UAV safe landing zones,” Image and Vision Computing, vol. 32, no. 9, pp. 568–578, 2014.
  10. Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges,” IEEE Communications magazine, vol. 54, no. 5, pp. 36–42, 2016.
  11. H. Chen, R. Abbas, P. Cheng, M. Shirvanimoghaddam, W. Hardjawana, W. Bao, Y. Li, and B. Vucetic, “Ultra-reliable low latency cellular networks: Use cases, challenges and approaches,” IEEE Communications Magazine, vol. 56, no. 12, pp. 119–125, 2018.
  12. C. Brosilow and B. Joseph, Techniques of model-based control. Prentice Hall Professional, 2002.
  13. J. A. Rossiter, Model-based predictive control: a practical approach. CRC press, 2017.
  14. J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,” Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–1480, 2015.
  15. M. Hasanbeig, D. Kroening, and A. Abate, “Towards verifiable and safe model-free reinforcement learning,” CEUR Workshop Proceedings, 2020.
  16. K. Stankeviciute, A. M Alaa, and M. van der Schaar, “Conformal time-series forecasting,” Advances in neural information processing systems, vol. 34, pp. 6216–6228, 2021.
  17. B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, “Temporal fusion transformers for interpretable multi-horizon time series forecasting,” International Journal of Forecasting, vol. 37, no. 4, pp. 1748–1764, 2021.
  18. B. Tang and D. S. Matteson, “Probabilistic transformer for time series analysis,” Advances in Neural Information Processing Systems, vol. 34, pp. 23592–23608, 2021.
  19. L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer: Reinforcement learning via sequence modeling,” Advances in neural information processing systems, vol. 34, pp. 15084–15097, 2021.
  20. Artech house, 2003.
  21. K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-based inference,” Proceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30055–30062, 2020.
  22. D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, “Improved variational inference with inverse autoregressive flow,” Advances in neural information processing systems, vol. 29, 2016.
  23. A. N. Angelopoulos, S. Bates, A. Fisch, L. Lei, and T. Schuster, “Conformal risk control,” arXiv preprint arXiv:2208.02814, 2022.
  24. M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed safety using control lyapunov–barrier function,” Automatica, vol. 66, pp. 39–47, 2016.
  25. A. Anand, K. Seel, V. Gjærum, A. Håkansson, H. Robinson, and A. Saad, “Safe learning for control using control lyapunov functions and control barrier functions: A review,” Procedia Computer Science, vol. 192, pp. 3987–3997, 2021.
  26. M. B. Saltık, L. Özkan, J. H. Ludlage, S. Weiland, and P. M. Van den Hof, “An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects,” Journal of Process Control, vol. 61, pp. 77–102, 2018.
  27. A. Bemporad and M. Morari, “Robust model predictive control: A survey,” in Robustness in identification and control, pp. 207–226, Springer, 2007.
  28. I. R. Manchester and J.-J. E. Slotine, “Robust control contraction metrics: A convex approach to nonlinear state-feedback H∞superscript𝐻{H}^{\infty}italic_H start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT control,” IEEE Control Systems Letters, vol. 2, no. 3, pp. 333–338, 2018.
  29. D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning internal representations by error propagation,” 1985.
  30. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  31. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  32. L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-based model predictive control: Toward safe learning in control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 269–296, 2020.
  33. W. Chen, D. Subramanian, and S. Paternain, “Probabilistic constraint for safety-critical reinforcement learning,” arXiv preprint arXiv:2306.17279, 2023.
  34. C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in International conference on machine learning, pp. 1321–1330, PMLR, 2017.
  35. L. Tao, Y. Zhu, H. Guo, M. Dong, and C. Xu, “A benchmark study on calibration,” arXiv preprint arXiv:2308.11838, 2023.
  36. O. Simeone, Machine learning for engineers. Cambridge University Press, 2022.
  37. S. G. Walker, “Bayesian inference with misspecified models,” Journal of statistical planning and inference, vol. 143, no. 10, pp. 1621–1633, 2013.
  38. R. Martinez-Cantin, K. Tee, and M. McCourt, “Practical Bayesian optimization in the presence of outliers,” in International conference on artificial intelligence and statistics, pp. 1722–1731, PMLR, 2018.
  39. M. Zecchin, S. Park, O. Simeone, M. Kountouris, and D. Gesbert, “Robust PACm𝑚{}^{m}start_FLOATSUPERSCRIPT italic_m end_FLOATSUPERSCRIPT: Training ensemble models under misspecification and outliers,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  40. Springer, 2005.
  41. V. Quach, A. Fisch, T. Schuster, A. Yala, J. H. Sohn, T. S. Jaakkola, and R. Barzilay, “Conformal language modeling,” arXiv preprint arXiv:2306.10193, 2023.
  42. N. Deutschmann, M. Alberts, and M. R. Martínez, “Conformal autoregressive generation: Beam search with coverage guarantees,” arXiv preprint arXiv:2309.03797, 2023.
  43. Z. Wang, R. Gao, M. Yin, M. Zhou, and D. M. Blei, “Probabilistic conformal prediction using conditional random samples,” arXiv preprint arXiv:2206.06584, 2022.
  44. J. Wang, J. Tong, K. Tan, Y. Vorobeychik, and Y. Kantaros, “Conformal temporal logic planning using large language models: Knowing when to do what and when to ask for help,” arXiv preprint arXiv:2309.10092, 2023.
  45. A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley, et al., “Robots that ask for help: Uncertainty alignment for large language model planners,” arXiv preprint arXiv:2307.01928, 2023.
  46. T. G. Dietterich and J. Hostetler, “Conformal prediction intervals for markov decision process trajectories,” arXiv preprint arXiv:2206.04860, 2022.
  47. L. Lindemann, X. Qin, J. V. Deshmukh, and G. J. Pappas, “Conformal prediction for STL runtime verification,” in Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), pp. 142–153, 2023.
  48. F. Cairoli, N. Paoletti, and L. Bortolussi, “Conformal quantitative predictive monitoring of STL requirements for stochastic processes,” in Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control, pp. 1–11, 2023.
  49. L. Lindemann, M. Cleaveland, G. Shim, and G. J. Pappas, “Safe planning in dynamic environments using conformal prediction,” arXiv preprint arXiv:2210.10254, 2022.
  50. A. Dixit, L. Lindemann, S. X. Wei, M. Cleaveland, G. J. Pappas, and J. W. Burdick, “Adaptive conformal prediction for motion planning among dynamic agents,” in Learning for Dynamics and Control Conference, pp. 300–314, PMLR, 2023.
  51. S. T. Jose and O. Simeone, “Address-event variable-length compression for time-encoded data,” in 2020 International Symposium on Information Theory and Its Applications (ISITA), pp. 71–75, IEEE, 2020.
  52. G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. Van Sloun, and Y. C. Eldar, “KalmanNet: Neural network aided kalman filtering for partially known dynamics,” IEEE Transactions on Signal Processing, vol. 70, pp. 1532–1547, 2022.
  53. K. Pratik, R. A. Amjad, A. Behboodi, J. B. Soriaga, and M. Welling, “Neural augmentation of kalman filter with hypernetwork for channel tracking,” in 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2021.
  54. S. Sun and R. Yu, “Copula conformal prediction for multi-step time series forecasting,” arXiv preprint arXiv:2212.03281, 2022.
  55. M. Cleaveland, I. Lee, G. J. Pappas, and L. Lindemann, “Conformal prediction regions for time series using linear complementarity programming,” arXiv preprint arXiv:2304.01075, 2023.
  56. J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adversarial networks,” Advances in neural information processing systems, vol. 32, 2019.
  57. K. Rasul, C. Seward, I. Schuster, and R. Vollgraf, “Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting,” in International Conference on Machine Learning, pp. 8857–8868, PMLR, 2021.
  58. H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An introduction to probabilistic spiking neural networks: Probabilistic models, learning rules, and applications,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 64–77, 2019.
  59. B. Rosenfeld, O. Simeone, and B. Rajendran, “Spiking generative adversarial networks with a neural network discriminator: Local training, Bayesian models, and continual meta-learning,” IEEE Transactions on Computers, vol. 71, no. 11, pp. 2778–2791, 2022.
  60. D. Stutz, A. T. Cemgil, A. Doucet, et al., “Learning optimal conformal classifiers,” arXiv preprint arXiv:2110.09192, 2021.
  61. G. S. Dhillon, G. Deligiannidis, and T. Rainforth, “On the expected size of conformal prediction sets,” arXiv preprint arXiv:2306.07254, 2023.
  62. A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story generation,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, 2018.
  63. A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” arXiv preprint arXiv:1904.09751, 2019.
  64. C. Meister, T. Pimentel, G. Wiher, and R. Cotterell, “Locally typical sampling,” Transactions of the Association for Computational Linguistics, vol. 11, pp. 102–121, 2023.
  65. K. Haneda, J. Zhang, L. Tan, G. Liu, Y. Zheng, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li, et al., “5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments,” in 2016 IEEE 83rd vehicular technology conference (VTC spring), pp. 1–7, IEEE, 2016.
  66. J. Hoydis, S. Cammerer, F. Ait Aoudia, A. Vem, N. Binder, G. Marcus, and A. Keller, “Sionna: An open-source library for next-generation physical layer research,” arXiv preprint, Mar. 2022.
  67. Academic Press, 2016.
  68. D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR: Probabilistic forecasting with autoregressive recurrent networks,” International Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.
  69. N. Hoven and A. Sahai, “Power scaling for cognitive radio,” in 2005 International Conference on Wireless Networks, Communications and Mobile Computing, vol. 1, pp. 250–255, IEEE, 2005.
  70. A. Sahai, N. Hoven, S. M. Mishra, and R. Tandra, “Fundamental tradeoffs in robust spectrum sensing for opportunistic frequency reuse,” in Proc First Intl Workshop on Tech. and Policy for Accessing Spectrum, 2006.
  71. J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia, “Robust online monitoring of signal temporal logic,” Formal Methods in System Design, vol. 51, pp. 5–30, 2017.
  72. S. Lin and D. J. Costello, Error control coding: fundamentals and applications. Upper Saddle River, NJ: Pearson/Prentice Hall, 2004.
  73. W. Lee, O. Simeone, J. Kang, S. Rangan, and P. Popovski, “HARQ buffer management: An information-theoretic view,” IEEE Transactions on Communications, vol. 63, no. 11, pp. 4539–4550, 2015.
  74. I. Gibbs and E. Candes, “Adaptive conformal inference under distribution shift,” Advances in Neural Information Processing Systems, vol. 34, pp. 1660–1672, 2021.
  75. M. Zaffran, O. Féron, Y. Goude, J. Josse, and A. Dieuleveut, “Adaptive conformal predictions for time series,” in International Conference on Machine Learning, pp. 25834–25866, PMLR, 2022.
  76. J. Lekeufack, A. A. Angelopoulos, A. Bajcsy, M. I. Jordan, and J. Malik, “Conformal decision theory: Safe autonomous decisions from imperfect predictions,” 2023.
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.