Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autonomous Mapping and Navigation using Fiducial Markers and Pan-Tilt Camera for Assisting Indoor Mobility of Blind and Visually Impaired People (2310.10290v1)

Published 16 Oct 2023 in cs.RO and cs.HC

Abstract: Large indoor spaces have complex layouts making them difficult to navigate. Indoor spaces in hospitals, universities, shopping complexes, etc., carry multi-modal information in the form of text and symbols. Hence, it is difficult for Blind and Visually Impaired (BVI) people to independently navigate such spaces. Indoor environments are usually GPS-denied; therefore, Bluetooth-based, WiFi-based, or Range-based methods are used for localization. These methods have high setup costs, lesser accuracy, and sometimes need special sensing equipment. We propose a Visual Assist (VA) system for the indoor navigation of BVI individuals using visual Fiducial markers for localization. State-of-the-art (SOTA) approaches for visual localization using Fiducial markers use fixed cameras having a narrow field of view. These approaches stop tracking the markers when they are out of sight. We employ a Pan-Tilt turret-mounted camera which enhances the field of view to 360{\deg} for enhanced marker tracking. We, therefore, need fewer markers for mapping and navigation. The efficacy of the proposed VA system is measured on three metrics, i.e., RMSE (Root Mean Square Error), ADNN (Average Distance to Nearest Neighbours), and ATE (Absolute Trajectory Error). Our system outperforms Hector-SLAM, ORB-SLAM3, and UcoSLAM. The proposed system achieves localization accuracy within $\pm8cm$ compared to $\pm12cm$ and $\pm10cm$ for ORB-SLAM3 and UcoSLAM, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Lee, Y.H., Medioni, G.: RGB-D camera based wearable navigation system for the visually impaired. Computer Vision and Image Understanding 149, 3–20 (2016). https://doi.org/10.1016/j.cviu.2016.03.019 (3) Plikynas, D., Žvironas, A., Budrionis, A., Gudauskis, M.: Indoor navigation systems for visually impaired persons: Mapping the features of existing technologies to user needs. Sensors (Switzerland) 20(3) (2020). https://doi.org/10.3390/s20030636 (4) Cheraghi, S.A., Namboodiri, V., Sinha, K.: Ibeaconmap: Automated indoor space representation for beacon-based wayfinding. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) Computers Helping People with Special Needs, pp. 105–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58796-3_14 (5) Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Plikynas, D., Žvironas, A., Budrionis, A., Gudauskis, M.: Indoor navigation systems for visually impaired persons: Mapping the features of existing technologies to user needs. Sensors (Switzerland) 20(3) (2020). https://doi.org/10.3390/s20030636 (4) Cheraghi, S.A., Namboodiri, V., Sinha, K.: Ibeaconmap: Automated indoor space representation for beacon-based wayfinding. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) Computers Helping People with Special Needs, pp. 105–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58796-3_14 (5) Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Cheraghi, S.A., Namboodiri, V., Sinha, K.: Ibeaconmap: Automated indoor space representation for beacon-based wayfinding. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) Computers Helping People with Special Needs, pp. 105–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58796-3_14 (5) Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  2. Plikynas, D., Žvironas, A., Budrionis, A., Gudauskis, M.: Indoor navigation systems for visually impaired persons: Mapping the features of existing technologies to user needs. Sensors (Switzerland) 20(3) (2020). https://doi.org/10.3390/s20030636 (4) Cheraghi, S.A., Namboodiri, V., Sinha, K.: Ibeaconmap: Automated indoor space representation for beacon-based wayfinding. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) Computers Helping People with Special Needs, pp. 105–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58796-3_14 (5) Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Cheraghi, S.A., Namboodiri, V., Sinha, K.: Ibeaconmap: Automated indoor space representation for beacon-based wayfinding. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) Computers Helping People with Special Needs, pp. 105–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58796-3_14 (5) Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  3. Cheraghi, S.A., Namboodiri, V., Sinha, K.: Ibeaconmap: Automated indoor space representation for beacon-based wayfinding. In: Miesenberger, K., Manduchi, R., Covarrubias Rodriguez, M., Peňáz, P. (eds.) Computers Helping People with Special Needs, pp. 105–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58796-3_14 (5) Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  4. Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. EURASIP Journal on Advances in Signal Processing 2006, 1–11 (2006) (6) He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  5. He, H., Li, Y., Guan, Y., Tan, J.: Wearable Ego-Motion Tracking for Blind Navigation in Indoor Environments. IEEE Transactions on Automation Science and Engineering 12(4), 1181–1190 (2015). https://doi.org/10.1109/TASE.2015.2471175 (7) Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  6. Mulloni, A., Wagner, D., Barakonyi, I., Schmalstieg, D.: Indoor positioning and navigation with camera phones. IEEE Pervasive Computing 8(2), 22–31 (2009). https://doi.org/10.1109/MPRV.2009.30 (8) de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  7. de la Puente, P., Bajones, M., Reuther, C., Wolf, D., Fischinger, D., Vincze, M.: Robot Navigation in Domestic Environments: Experiences Using RGB-D Sensors in Real Homes. Journal of Intelligent and Robotic Systems: Theory and Applications 94(2), 455–470 (2019). https://doi.org/10.1007/s10846-018-0885-6 (9) Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  8. Katzschmann, R.K., Araki, B., Rus, D.: Safe local navigation for visually impaired users with a time-of-flight and haptic feedback device. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26(3), 583–593 (2018). https://doi.org/10.1109/TNSRE.2018.2800665 (10) Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  9. Kay, L.: An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2), 53–59 (1964) (11) Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  10. Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: A survey (2010). https://doi.org/10.1109/TSMCC.2009.2021255 (12) Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  11. Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: Current status, challenges, and future directions. Sensors 17(3) (2017). https://doi.org/10.3390/s17030565 (13) Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  12. Silva, C.S., Wimalaratne, P.: State-of-art-in-indoor navigation and positioning of visually impaired and blind. 17th International Conference on Advances in ICT for Emerging Regions, ICTer 2017 - Proceedings 2018-January, 271–279 (2017). https://doi.org/10.1109/ICTER.2017.8257826 (14) Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  13. Fallah, N., Apostolopoulos, I., Bekris, K., Folmer, E.: Indoor human navigation systems: A survey. Oxford Academic (2013). https://doi.org/10.1093/iwc/iws010. https://academic.oup.com/iwc/article/25/1/21/773804 (15) Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  14. Guerreiro, J., Ahmetovic, D., Sato, D., Kitani, K., Asakawa, C.: Airport accessibility and navigation assistance for people with visual impairments. Conference on Human Factors in Computing Systems - Proceedings, 1–14 (2019). https://doi.org/10.1145/3290605.3300246 (16) Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  15. Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K.M., Asakawa, C.: Smartphone-based localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing 57, 14–32 (2019). https://doi.org/10.1016/j.pmcj.2019.04.003 (17) Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  16. Ramesh, K., Nagananda, S.N., Ramasangu, H., Deshpande, R.: Real-time localization and navigation in an indoor environment using monocular camera for visually impaired. 2018 5th International Conference on Industrial Engineering and Applications, ICIEA 2018, 122–128 (2018). https://doi.org/10.1109/IEA.2018.8387082 (18) Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  17. Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems, vol. 2, pp. 1–9 (2014). Berkeley, CA (19) Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  18. Liu, Z., Zhang, F.: Balm: Bundle adjustment for lidar mapping. IEEE Robotics and Automation Letters 6(2), 3184–3191 (2021) (20) Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  19. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition 51(October), 481–491 (2016). https://doi.org/10.1016/j.patcog.2015.09.023 (21) Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  20. Lahav, O., Schloerb, D.W., Kumar, S., Srinivasan, M.A.: BlindAid: A learning environment for enabling people who are blind to explore and navigate through unknown real spaces. 2008 Virtual Rehabilitation, IWVR, 193–197 (2008). https://doi.org/10.1109/ICVR.2008.4625159 (22) Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  21. Bousbia-Salah, M., Bettayeb, M., Larbi, A.: A navigation aid for blind people. Journal of Intelligent and Robotic Systems: Theory and Applications 64(3-4), 387–400 (2011). https://doi.org/10.1007/s10846-011-9555-7 (23) Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  22. Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognition Letters (2018). https://doi.org/10.1016/j.patrec.2018.10.031 (24) Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  23. Gutiérrez-Gómez, D., Puig, L., Guerrero, J.J.: Full scaled 3d visual odometry from a single wearable omnidirectional camera. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4276–4281 (2012). https://doi.org/10.1109/IROS.2012.6385607 (25) Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  24. Ishihara, T., Vongkulbhisal, J., Kitani, K.M., Asakawa, C.: Beacon-guided structure from motion for smartphone-based navigation. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 769–777 (2017). https://doi.org/10.1109/WACV.2017.91 (26) Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  25. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single camera slam. IEEE transactions on pattern analysis and machine intelligence 29(6), 1052–1067 (2007) (27) Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  26. Eade, E., Drummond, T.: Scalable monocular slam. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 469–476 (2006). IEEE (28) Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  27. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007). IEEE (29) Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  28. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics 31(5), 1147–1163 (2015) (30) Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  29. Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33(5), 1255–1262 (2017) (31) Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  30. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam. IEEE Transactions on Robotics 37(6), 1874–1890 (2021) (32) Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  31. Muñoz-Salinas, R., Marín-Jimenez, M.J., Yeguas-Bolivar, E., Medina-Carnicer, R.: Mapping and localization from planar markers. Pattern Recognition 73, 158–171 (2018) (33) Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  32. Muñoz-Salinas, R., Marín-Jimenez, M.J., Medina-Carnicer, R.: SPM-SLAM: Simultaneous localization and mapping with squared planar markers. Pattern Recognition 86, 156–171 (2019). https://doi.org/10.1016/j.patcog.2018.09.003 (34) Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  33. Muñoz-Salinas, R., Medina-Carnicer, R.: UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognition 101, 107193 (2020) arXiv:1902.03729. https://doi.org/10.1016/j.patcog.2019.107193 (35) Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  34. Romero-Ramirez, F.J., Muñoz-Salinas, R., Marín-Jiménez, M.J., Cazorla, M., Medina-Carnicer, R.: sSLAM: Speeded-Up Visual SLAM Mixing Artificial Markers and Temporary Keypoints. Sensors 23(4), 1–20 (2023). https://doi.org/10.3390/s23042210 (36) Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  35. Sato, D., Oh, U., Guerreiro, J., Ahmetovic, D., Naito, K., Takagi, H., Kitani, K.M., Asakawa, C.: Navcog3 in the wild: Large-scale Blind Indoor Navigation Assistant with Semantic Features. ACM Transactions on Accessible Computing 12(3), 1–30 (2019). https://doi.org/10.1145/3340319 (37) Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  36. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: In: Christensen, H.I., Khatib, O. (eds.) Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera, pp. 235–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-29363-9_14. https://doi.org/10.1007/978-3-319-29363-9_14 (38) Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  37. Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with marg sensors in free-living environments. IEEE Transactions on Neural Systems and Rehabilitation Engineering 21(2), 254–264 (2013). https://doi.org/10.1109/TNSRE.2012.2205706 (39) Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  38. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014. Similarity Matching in Computer Vision and Multimedia (40) Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  39. Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial Markers for Pose Estimation: Overview, Applications and Experimental Comparison of the ARTag, AprilTag, ArUco and STag Markers. Journal of Intelligent and Robotic Systems: Theory and Applications 101(4) (2021). https://doi.org/10.1007/s10846-020-01307-9 (41) Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  40. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image and Vision Computing 76, 38–47 (2018). https://doi.org/10.1016/j.imavis.2018.05.004 (42) Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  41. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 (43) Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  42. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7 (44) Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  43. Xing, B.Y., Dang, R.N., Xu, P., Jiang, C.X., Jiang, L.: Slam algorithm for aruco landmark array based on synchronization optimization. Journal of Physics: Conference Series 1507(5), 052011 (2020). https://doi.org/10.1088/1742-6596/1507/5/052011 (45) Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  44. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010). https://doi.org/10.1109/CVPR.2010.5539960 (46) Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  45. Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 9th IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR 2011, pp. 155–160 (2011). https://doi.org/10.1109/SSRR.2011.6106777 (47) Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  46. Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 116–121 (1985). IEEE (48) Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  47. Ivanov, R.: An approach for developing indoor navigation systems for visually impaired people using building information modeling. Journal of Ambient Intelligence and Smart Environments 9, 449–467 (2017). https://doi.org/10.3233/AIS-170441. 4 (49) Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  48. Li, B., Muñoz, J.P., Rong, X., Chen, Q., Xiao, J., Tian, Y., Arditi, A., Yousuf, M.: Vision-based mobile indoor assistive navigation aid for blind people. IEEE Transactions on Mobile Computing 18(3), 702–714 (2019). https://doi.org/10.1109/TMC.2018.2842751 (50) Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  49. Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. IFAC Proceedings Volumes 46(29), 107–112 (2013). https://doi.org/10.3182/20131111-3-KR-2043.00007 (51) Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  50. Mikael Pålsson, J.S., Levcopoulos, C.: The Camera Placement Problem – An art gallery problem variation. PhD thesis, Lund University (2008). http://fileadmin.cs.lth.se/cs/education/Examensarbete/Rapporter/2008/CameraPlacement.pdf (52) Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  51. Coulter, R.C.: Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992) (53) Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  52. Yagfarov, R., Ivanou, M., Afanasyev, I.: Map Comparison of Lidar-based 2D SLAM Algorithms Using Precise Ground Truth. 2018 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018, 1979–1983 (2018). https://doi.org/10.1109/ICARCV.2018.8581131 (54) May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321 May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321
  53. May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics 26(11-12), 934–965 (2009) https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20321. https://doi.org/10.1002/rob.20321

Summary

We haven't generated a summary for this paper yet.