Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VIBE: Topic-Driven Temporal Adaptation for Twitter Classification (2310.10191v4)

Published 16 Oct 2023 in cs.CL

Abstract: Language features are evolving in real-world social media, resulting in the deteriorating performance of text classification in dynamics. To address this challenge, we study temporal adaptation, where models trained on past data are tested in the future. Most prior work focused on continued pretraining or knowledge updating, which may compromise their performance on noisy social media data. To tackle this issue, we reflect feature change via modeling latent topic evolution and propose a novel model, VIBE: Variational Information Bottleneck for Evolutions. Concretely, we first employ two Information Bottleneck (IB) regularizers to distinguish past and future topics. Then, the distinguished topics work as adaptive features via multi-task training with timestamp and class label prediction. In adaptive learning, VIBE utilizes retrieved unlabeled data from online streams created posterior to training data time. Substantial Twitter experiments on three classification tasks show that our model, with only 3% of data, significantly outperforms previous state-of-the-art continued-pretraining methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.