Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chinese Painting Style Transfer Using Deep Generative Models (2310.09978v2)

Published 15 Oct 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Artistic style transfer aims to modify the style of the image while preserving its content. Style transfer using deep learning models has been widely studied since 2015, and most of the applications are focused on specific artists like Van Gogh, Monet, Cezanne. There are few researches and applications on traditional Chinese painting style transfer. In this paper, we will study and leverage different state-of-the-art deep generative models for Chinese painting style transfer and evaluate the performance both qualitatively and quantitatively. In addition, we propose our own algorithm that combines several style transfer models for our task. Specifically, we will transfer two main types of traditional Chinese painting style, known as "Gong-bi" and "Shui-mo" (to modern images like nature objects, portraits and landscapes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.