Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient two-grid fourth-order compact difference scheme with variable-step BDF2 method for the semilinear parabolic equation (2310.09599v1)

Published 14 Oct 2023 in math.NA and cs.NA

Abstract: Due to the lack of corresponding analysis on appropriate mapping operator between two grids, high-order two-grid difference algorithms are rarely studied. In this paper, we firstly discuss the boundedness of a local bi-cubic Lagrange interpolation operator. And then, taking the semilinear parabolic equation as an example, we first construct a variable-step high-order nonlinear difference algorithm using compact difference technique in space and the second-order backward differentiation formula (BDF2) with variable temporal stepsize in time. With the help of discrete orthogonal convolution (DOC) kernels and a cut-off numerical technique, the unique solvability and corresponding error estimates of the high-order nonlinear difference scheme are established under assumptions that the temporal stepsize ratio satisfies rk < 4.8645 and the maximum temporal stepsize satisfies tau = o(h1/2 ). Then, an efficient two-grid high-order difference algorithm is developed by combining a small-scale variable-step high-order nonlinear difference algorithm on the coarse grid and a large-scale variable-step high-order linearized difference algorithm on the fine grid, in which the constructed piecewise bi-cubic Lagrange interpolation mapping operator is adopted to project the coarse-grid solution to the fine grid. Under the same temporal stepsize ratio restriction rk < 4.8645 and a weaker maximum temporal stepsize condition tau = o(H1.2 ), optimal fourth-order in space and second-order in time error estimates of the two-grid difference scheme is established if the coarse-fine grid stepsizes satisfy H = O(h4/7). Finally, several numerical experiments are carried out to demonstrate the effectiveness and efficiency of the proposed scheme.

Summary

We haven't generated a summary for this paper yet.