Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A discontinuous plane wave neural network method for Helmholtz equation and time-harmonic Maxwell's equations (2310.09527v2)

Published 14 Oct 2023 in math.NA and cs.NA

Abstract: In this paper we propose a {\it discontinuous} plane wave neural network (DPWNN) method with $hp-$refinement for approximately solving Helmholtz equation and time-harmonic Maxwell equations. In this method, we define a quadratic functional as in the plane wave least square (PWLS) method with $h-$refinement and introduce new discretization sets spanned by element-wise neural network functions with a single hidden layer, where the activation function on each element is chosen as a complex-valued exponential function like the plane wave function. The desired approximate solution is recursively generated by iteratively solving the minimization problem associated with the functional and the sets described above, which is defined by a sequence of approximate minimizers of the underlying residual functionals, where plane wave direction angles and activation coefficients are alternatively computed by iterative algorithms. For the proposed DPWNN method, the plane wave directions are adaptively determined in the iterative process, which is different from that in the standard PWLS method (where the plane wave directions are preliminarily given). Numerical experiments will confirm that this DPWNN method can generate approximate solutions with higher accuracy than the PWLS method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.