Eliciting Model Steering Interactions from Users via Data and Visual Design Probes (2310.09314v1)
Abstract: Domain experts increasingly use automated data science tools to incorporate ML models in their work but struggle to "debug" these models when they are incorrect. For these experts, semantic interactions can provide an accessible avenue to guide and refine ML models without having to programmatically dive into its technical details. In this research, we conduct an elicitation study using data and visual design probes to examine if and how experts with a spectrum of ML expertise use semantic interactions to update a simple classification model. We use our design probes to facilitate an interactive dialogue with 20 participants and codify their interactions as a set of target-interaction pairs. Interestingly, our findings revealed that many targets of semantic interactions do not directly map to ML model parameters, but instead aim to augment the data a model uses for training. We also identify reasons that participants would hesitate to interact with ML models, including burdens of cognitive load and concerns of injecting bias. Unexpectedly participants also saw the value of using semantic interactions to work collaboratively with members of their team. Participants with less ML expertise found this to be a useful mechanism for communicating their concerns to ML experts. This was an especially important observation, as our study also shows the different needs that correspond to diverse ML expertise. Collectively, we demonstrate that design probes are effective tools for proactively gathering the affordances that should be offered in an interactive machine learning system.
- C. Collins, N. Andrienko, T. Schreck, J. Yang, J. Choo, U. Engelke, A. Jena, and T. Dwyer, “Guidance in the human–machine analytics process,” Visual Informatics, vol. 2, no. 3, pp. 166–180, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468502X1830041X
- D. Sacha, M. Sedlmair, L. Zhang, J. A. Lee, J. Peltonen, D. Weiskopf, S. C. North, and D. A. Keim, “What you see is what you can change: Human-centered machine learning by interactive visualization,” Neurocomputing, vol. 268, pp. 164–175, 2017.
- F. Sperrle, A. Jeitler, J. Bernard, D. Keim, and M. El-Assady, “Co-adaptive visual data analysis and guidance processes,” Computers & Graphics, 2021.
- F. Sperrle, M. El-Assady, G. Guo, R. Borgo, D. H. Chau, A. Endert, and D. Keim, “A survey of human-centered evaluations in human-centered machine learning,” Computer Graphics Forum, vol. 40, no. 3, pp. 543–567, 2021.
- N. Boukhelifa, A. Bezerianos, R. Chang, C. Collins, S. Drucker, A. Endert, J. Hullman, C. North, and M. Sedlmair, “Challenges in evaluating interactive visual machine learning systems,” IEEE Computer Graphics and Applications, vol. 40, no. 6, pp. 88–96, 2020.
- J. J. Dudley and P. O. Kristensson, “A review of user interface design for interactive machine learning,” ACM Trans. Interact. Intell. Syst., vol. 8, no. 2, jun 2018. [Online]. Available: https://doi.org/10.1145/3185517
- B. Combemale, J. Kienzle, G. Mussbacher, H. Ali, D. Amyot, M. Bagherzadeh, E. Batot, N. Bencomo, B. Benni, J.-M. Bruel, J. Cabot, B. H. Cheng, P. Collet, G. Engels, R. Heinrich, J.-M. Jezequel, A. Koziolek, S. Mosser, R. Reussner, H. Sahraoui, R. Saini, J. Sallou, S. Stinckwich, E. Syriani, and M. Wimmer, “A hitchhiker’s guide to model-driven engineering for data-centric systems,” IEEE Software, vol. 38, no. 4, pp. 71–84, 2021.
- H. Subramonyam, C. Seifert, and E. Adar, “How can human-centered design shape data-centric ai?” 2021. [Online]. Available: https://sites.google.com/view/hcai-human-centered-ai-neurips/home
- N. Sambasivan, S. Kapania, H. Highfill, D. Akrong, P. Paritosh, and L. M. Aroyo, ““everyone wants to do the model work, not the data work”: Data cascades in high-stakes ai,” in Proc. CHI’21s, New York, NY, USA, 2021.
- A. Endert, L. Bradel, and C. North, “Beyond control panels: Direct manipulation for visual analytics,” IEEE Computer Graphics and Applications, vol. 33, no. 4, pp. 6–13, 2013.
- Q. Yang, J. Suh, N.-C. Chen, and G. Ramos, “Grounding interactive machine learning tool design in how non-experts actually build models,” in Proc. DIS ’18, New York, NY, USA, 2018, p. 573–584.
- S. Mishra and J. M. Rzeszotarski, “Designing interactive transfer learning tools for ml non-experts,” in Proc. CHI’21, 2021.
- Q. Yang, A. Steinfeld, C. Rosé, and J. Zimmerman, “Re-examining whether, why, and how human-ai interaction is uniquely difficult to design,” in Proc. CHI’20, 2020, p. 1–13.
- E. B.-N. Sanders and P. J. Stappers, “Probes, toolkits and prototypes: three approaches to making in codesigning,” CoDesign, vol. 10, no. 1, pp. 5–14, 2014. [Online]. Available: https://doi.org/10.1080/15710882.2014.888183
- E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct manipulation interfaces,” Hum. Comput. Interact., vol. 1, pp. 311–338, 1985.
- C. Graham and M. Rouncefield, “Probes and participation,” in Proc. PDC’08, 2008, p. 194–197.
- D. Lee, S. Macke, D. Xin, A. Lee, S. Huang, and A. G. Parameswaran, “A human-in-the-loop perspective on automl: Milestones and the road ahead,” IEEE Data Eng. Bull., vol. 42, no. 2, pp. 59–70, 2019. [Online]. Available: http://sites.computer.org/debull/A19june/p59.pdf
- F. M. Zanzotto, “Viewpoint: Human-in-the-loop artificial intelligence,” Journal of Artificial Intelligence Research, vol. 64, p. 243–252, Feb 2019.
- D. Dellermann, A. Calma, N. Lipusch, T. Weber, S. Weigel, and P. Ebel, “The future of human-ai collaboration: a taxonomy of design knowledge for hybrid intelligence systems,” 2021. [Online]. Available: https://arxiv.org/abs/2105.03354
- B. Shneiderman, “Human-centered artificial intelligence: Reliable, safe & trustworthy,” International Journal of Human–Computer Interaction, vol. 36, no. 6, pp. 495–504, 2020.
- Y. Gil, J. Honaker, S. Gupta, Y. Ma, V. D’Orazio, D. Garijo, S. Gadewar, Q. Yang, and N. Jahanshad, “Towards human-guided machine learning,” in Proc. IUI’19, 2019, p. 614–624.
- D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit, and C. Tominski, “Characterizing guidance in visual analytics,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 111–120, 2017.
- J. J. van Wijk, “The value of visualization,” in VIS 05. IEEE Visualization, 2005., 2005, pp. 79–86.
- G. Kindlmann and C. Scheidegger, “An algebraic process for visualization design,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2181–2190, 2014.
- A. McNutt, G. Kindlmann, and M. Correll, “Surfacing visualization mirages,” in Proc CHI’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1–16. [Online]. Available: https://doi.org/10.1145/3313831.3376420
- B. Shneiderman, “Direct manipulation: A step beyond programming languages,” Computer, vol. 16, no. 8, pp. 57–69, 1983.
- L. Jiang, S. Liu, and C. Chen, “Recent research advances on interactive machine learning,” Journal of Visualization, vol. 22, pp. 401–417, 2019.
- A. Endert, W. Ribarsky, C. Turkay, B. L. W. Wong, I. Nabney, I. D. Blanco, and F. Rossi, “The state of the art in integrating machine learning into visual analytics,” Computer Graphics Forum, vol. 36, no. 8, pp. 458–486, 2017.
- G. Ramos, C. Meek, P. Simard, J. Suh, and S. Ghorashi, “Interactive machine teaching: a human-centered approach to building machine-learned models,” Human–Computer Interaction, vol. 35, no. 5-6, pp. 413–451, April 2020.
- K. Holstein, J. Wortman Vaughan, H. Daumé, M. Dudik, and H. Wallach, “Improving fairness in machine learning systems: What do industry practitioners need?” in Proc. CHI’19, 2019, p. 1–16. [Online]. Available: https://doi.org/10.1145/3290605.3300830
- A. Endert, P. Fiaux, and C. North, “Semantic interaction for sensemaking: Inferring analytical reasoning for model steering,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2879–2888, 2012.
- L. Bradel, C. North, L. House, and S. Leman, “Multi-model semantic interaction for text analytics,” in Proc IEEE VAST’14, 2014, pp. 163–172.
- H. Lee, J. Kihm, J. Choo, J. T. Stasko, and H. Park, “ivisclustering: An interactive visual document clustering via topic modeling,” Computer Graphics Forum, vol. 31, 2012.
- J. Choo, C. Lee, C. K. Reddy, and H. Park, “Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 1992–2001, 2013.
- Ç. Demiralp, M. S. Bernstein, and J. Heer, “Learning perceptual kernels for visualization design,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp. 1933–1942, 2014.
- B. Saket, S. Huron, C. Perin, and A. Endert, “Investigating direct manipulation of graphical encodings as a method for user interaction,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 482–491, 2020.
- B. Saket, H. Kim, E. T. Brown, and A. Endert, “Visualization by demonstration: An interaction paradigm for visual data exploration,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 331–340, 2017.
- B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer, “Authoring sensor-based interactions by demonstration with direct manipulation and pattern recognition,” in Proc. CHI ’07. New York, NY, USA: Association for Computing Machinery, 2007, p. 145–154. [Online]. Available: https://doi.org/10.1145/1240624.1240646
- E. T. Brown, J. Lie, C. E. Brodely, and R. Chang, “Dis-function: Learning distance functions interactively,” in 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), 2012, pp. 83–92.
- E. Wall, S. Das, R. Chawla, B. Kalidindi, E. T. Brown, and A. Endert, “Podium: Ranking data using mixed-initiative visual analytics,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 288–297, 2018.
- S. Gehrmann, H. Strobelt, R. Krüger, H. Pfister, and A. M. Rush, “Visual interaction with deep learning models through collaborative semantic inference,” IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 884–894, 2020.
- S. M. Drucker, D. Fisher, and S. Basu, “Helping users sort faster with adaptive machine learning recommendations,” in Proc. INTERACT’11, 2011, p. 187–203.
- J. Bernard, M. Zeppelzauer, M. Sedlmair, and W. Aigner, “Vial: a unified process for visual interactive labeling,” The Visual Computer, vol. 34, no. 9, pp. 1189–1207, Sep 2018.
- J. Bernard, M. Hutter, M. Zeppelzauer, D. Fellner, and M. Sedlmair, “Comparing visual-interactive labeling with active learning: An experimental study,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 298–308, 2018.
- F. Hohman, K. Wongsuphasawat, M. B. Kery, and K. Patel, “Understanding and visualizing data iteration in machine learning,” in Proc. CHI’20, 2020, p. 1–13. [Online]. Available: https://doi.org/10.1145/3313831.3376177
- D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf, S. C. North, and D. A. Keim, “Visual interaction with dimensionality reduction: A structured literature analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 241–250, 2017.
- J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of visual analytics techniques for machine learning,” Computational Visual Media, vol. 7, no. 1, pp. 3–36, Mar 2021.
- J. Bae, T. Helldin, M. Riveiro, S. Nowaczyk, M.-R. Bouguelia, and G. Falkman, “Interactive clustering: A comprehensive review,” ACM Comput. Surv., vol. 53, no. 1, feb 2020.
- H. Hutchinson, W. Mackay, B. Westerlund, B. B. Bederson, A. Druin, C. Plaisant, M. Beaudouin-Lafon, S. Conversy, H. Evans, H. Hansen, N. Roussel, and B. Eiderbäck, “Technology probes: Inspiring design for and with families,” in Proc. CHI’03. Association for Computing Machinery, 2003, p. 17–24.
- H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale, “Empirical studies in information visualization: Seven scenarios,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 9, pp. 1520–1536, 2012.
- C. Broadley, “Visualising human-centred design relationships : a toolkit for participation,” 2013.
- S. Stumpf, V. Rajaram, L. Li, W.-K. Wong, M. Burnett, T. Dietterich, E. Sullivan, and J. Herlocker, “Interacting meaningfully with machine learning systems: Three experiments,” Int. J. Hum. Comput. Stud., vol. 67, no. 8, pp. 639–662, 2009.
- H. Subramonyam, C. Seifert, and E. Adar, “Towards a process model for co-creating ai experiences,” in Proc. DIS’21, 2021, p. 1529–1543.
- J. T. Browne, “Wizard of oz prototyping for machine learning experiences,” in Proc. CHI EA ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 1–6. [Online]. Available: https://doi.org/10.1145/3290607.3312877
- D. Maulsby, S. Greenberg, and R. Mander, “Prototyping an intelligent agent through wizard of oz,” in Proc. CHI ’93, 1993, p. 277–284.
- G. Dove, K. Halskov, J. Forlizzi, and J. Zimmerman, “Ux design innovation: Challenges for working with machine learning as a design material,” in Proc. CHI’17, 2017.
- F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker, “Gamut: A design probe to understand how data scientists understand machine learning models,” in Proc. CHI’19. ACM, 2019.
- M. Brehmer, S. Carpendale, B. Lee, and M. Tory, “Pre-design empiricism for information visualization: Scenarios, methods, and challenges,” in Proc. BELIV ’14, 2014, p. 147–151.
- T. Hogan, U. Hinrichs, and E. Hornecker, “The elicitation interview technique: Capturing people’s experiences of data representations,” IEEE Transactions on Visualization & Computer Graphics, vol. 22, no. 12, pp. 2579–2593, 2016.
- D. Xin, E. Y. Wu, D. Lee, N. Salehi, and A. Parameswaran, “Whither automl? understanding the role of automation in machine learning workflows,” ArXiv, vol. abs/2101.04834, 2021.
- A. C. Valdez, M. Ziefle, and M. Sedlmair, “Priming and anchoring effects in visualization,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 584–594, 2018.
- R. E. Schapire, “The strength of weak learnability,” Machine Learning, vol. 5, pp. 197–227, 2005.
- M. El-Assady, R. Sevastjanova, F. Sperrle, D. Keim, and C. Collins, “Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 382–391, Jan. 2018. [Online]. Available: http://ieeexplore.ieee.org/document/8019825/
- A. Crisan and M. Correll, “User ex machina: Simulation as a design probe in human-in-the-loop text analytics,” in Proc. CHI’21, 2021.
- G. Bansal, B. Nushi, E. Kamar, W. S. Lasecki, D. S. Weld, and E. Horvitz, “Beyond accuracy: The role of mental models in human-ai team performance,” Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, vol. 7, no. 1, pp. 2–11, Oct. 2019. [Online]. Available: https://ojs.aaai.org/index.php/HCOMP/article/view/5285
- F. Sperrle, J. Bernard, M. Sedlmair, D. Keim, and M. El-Assady, “Speculative execution for guided visual analytics,” in Proc. IEEE VIS Work. Mach. Learn. from User Interact. Vis. Anal., 2018. [Online]. Available: https://learningfromusersworkshop.github.io/papers/SpecEx.pdf
- H. Strobelt, J. Kinley, R. Krueger, J. Beyer, H. Pfister, and A. M. Rush, “Genni: Human-ai collaboration for data-backed text generation,” IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 1, pp. 1106–1116, 2022.
- B. Koch, E. Denton, A. Hanna, and J. G. Foster, “Reduced, reused and recycled: The life of a dataset in machine learning research,” 2021.
- B. Kim, “Interactive and interpretable machine learning models for human machine collaboration,” 2015. [Online]. Available: https://beenkim.github.io/papers/BKimPhDThesis.pdf
- D. Wang, J. D. Weisz, M. Muller, P. Ram, W. Geyer, C. Dugan, Y. Tausczik, H. Samulowitz, and A. Gray, “Human-ai collaboration in data science: Exploring data scientists’ perceptions of automated ai,” 2019.
- S. K. Karmaker, M. M. Hassan, M. J. Smith, L. Xu, C. Zhai, and K. Veeramachaneni, “Automl to date and beyond: Challenges and opportunities,” 2021. [Online]. Available: https://arxiv.org/abs/2010.10777
- E. Denton, M. Díaz, I. Kivlichan, V. Prabhakaran, and R. Rosen, “Whose ground truth? accounting for individual and collective identities underlying dataset annotation,” 2021. [Online]. Available: https://arxiv.org/abs/2112.04554
- M. L. Gordon, M. S. Lam, J. S. Park, K. Patel, J. T. Hancock, T. Hashimoto, and M. S. Bernstein, “Jury learning: Integrating dissenting voices into machine learning models,” 2022.
- A. M. Davani, M. Díaz, and V. Prabhakaran, “Dealing with disagreements: Looking beyond the majority vote in subjective annotations,” 2021. [Online]. Available: https://arxiv.org/abs/2110.05719
- N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. Christiano, “Learning to summarize from human feedback,” 2022.
- Y.-S. Kim, L. A. Walls, P. Krafft, and J. Hullman, “A bayesian cognition approach to improve data visualization,” in Proc CHI’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 1–14. [Online]. Available: https://doi.org/10.1145/3290605.3300912
- Y.-S. Kim, P. Kayongo, M. Grunde-McLaughlin, and J. Hullman, “Bayesian-assisted inference from visualized data,” IEEE Transactions on Visualization & Computer Graphics, vol. 27, no. 02, pp. 989–999, feb 2021.
- L. Padilla, M. Kay, and J. Hullman, “Uncertainty visualization,” Apr 2020. [Online]. Available: psyarxiv.com/ebd6r
- X. Pu and M. Kay, “A probabilistic grammar of graphics,” in Proc CHI’20. New York, NY, USA: Association for Computing Machinery, 2020, p. 1–13.
- O. Russakovsky, L.-J. Li, and L. Fei-Fei, “Best of both worlds: Human-machine collaboration for object annotation,” in Proc CVPR’15, June 2015.
- J. C. Chang, S. Amershi, and E. Kamar, “Revolt: Collaborative crowdsourcing for labeling machine learning datasets,” in Proceedings CHI’17, ser. CHI ’17, 2017, p. 2334–2346.
- Anamaria Crisan (12 papers)
- Maddie Shang (2 papers)
- Eric Brochu (4 papers)