Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Flexible and Efficient Temporal Logic Tool for Python: PyTeLo (2310.08714v1)

Published 12 Oct 2023 in cs.LO and cs.RO

Abstract: Temporal logic is an important tool for specifying complex behaviors of systems. It can be used to define properties for verification and monitoring, as well as goals for synthesis tools, allowing users to specify rich missions and tasks. Some of the most popular temporal logics include Metric Temporal Logic (MTL), Signal Temporal Logic (STL), and weighted STL (wSTL), which also allow the definition of timing constraints. In this work, we introduce PyTeLo, a modular and versatile Python-based software that facilitates working with temporal logic languages, specifically MTL, STL, and wSTL. Applying PyTeLo requires only a string representation of the temporal logic specification and, optionally, the dynamics of the system of interest. Next, PyTeLo reads the specification using an ANTLR-generated parser and generates an Abstract Syntax Tree (AST) that captures the structure of the formula. For synthesis, the AST serves to recursively encode the specification into a Mixed Integer Linear Program (MILP) that is solved using a commercial solver such as Gurobi. We describe the architecture and capabilities of PyTeLo and provide example applications highlighting its adaptability and extensibility for various research problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. P. Bellini, R. Mattolini, and P. Nesi, “Temporal logics for real-time system specification,” ACM Computing Surveys (CSUR), vol. 32, no. 1, pp. 12–42, 2000.
  2. H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots: Guarantees and feedback for robot behavior,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 211–236, 2018.
  3. D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning from signal temporal logic specifications,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.
  4. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–166, Springer, 2004.
  5. N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences using weighted signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2020.
  6. C. Brzoska, “Programming in metric temporal logic,” Theoretical computer science, vol. 202, no. 1-2, pp. 55–125, 1998.
  7. J. Cralley, O. Spantidi, B. Hoxha, and G. Fainekos, “TLTk: A toolbox for parallel robustness computation of temporal logic specifications,” in Runtime Verification: 20th International Conference, RV 2020, Los Angeles, CA, USA, October 6–9, 2020, Proceedings 20, pp. 404–416, Springer, 2020.
  8. Q. Thibeault, J. Anderson, A. Chandratre, G. Pedrielli, and G. Fainekos, “PSY-TaLiRo: A Python toolbox for search-based test generation for cyber-physical systems,” in Formal Methods for Industrial Critical Systems: 26th International Conference, FMICS 2021, Paris, France, August 24–26, 2021, Proceedings 26, pp. 223–231, Springer, 2021.
  9. D. Ulus, “Online monitoring of metric temporal logic using sequential networks,” arXiv preprint arXiv:1901.00175, 2019.
  10. M. Vazquez-Chanlatte, “mvcisback/py-metric-temporal-logic: v0.1.1,” Jan. 2019.
  11. “Stlinspector.” https://github.com/STLInspector/STLInspector.
  12. K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through signal temporal logic specifications: Infusing logical structure into gradient-based methods,” in Workshop on Algorithmic Foundations of Robotics, 2020.
  13. V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal logic with fewer binary variables,” IEEE Control Systems Letters, 2022.
  14. T. Parr, “The definitive antlr 4 reference,” The Definitive ANTLR 4 Reference, pp. 1–326, 2013.
  15. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2021.
  16. G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “An end-to-end system for accomplishing tasks with modular robots.,” in Robotics: Science and systems, vol. 12, pp. 4879–4883, 2016.
  17. A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka, “On temporal logic and signal processing,” in Automated Technology for Verification and Analysis: 10th International Symposium, ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings 10, pp. 92–106, Springer, 2012.
  18. G. V. Bochmann, “Hardware specification with temporal logic: An example,” IEEE Transactions on Computers, vol. 31, no. 03, pp. 223–231, 1982.
  19. A. Rizk, G. Batt, F. Fages, and S. Soliman, “On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology,” in Computational Methods in Systems Biology: 6th International Conference CMSB 2008, Rostock, Germany, October 12-15, 2008. Proceedings 6, pp. 251–268, Springer, 2008.
  20. A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for temporal logic robustness,” in RV, vol. 8734 of Lecture Notes in Computer Science, pp. 231–246, Springer, 2014.
  21. X. Yu, C. Wang, D. Yuan, S. Li, and X. Yin, “Model predictive control for signal temporal logic specifications with time interval decomposition,” arXiv preprint arXiv:2211.08031, 2022.
  22. N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean robustness for control from signal temporal logic specifications,” in 2019 American Control Conference (ACC), pp. 1690–1695, IEEE, 2019.
  23. G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree approach to data classification using signal temporal logic,” in Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, pp. 1–10, 2016.
  24. S. Sadraddini and C. Belta, “Robust temporal logic model predictive control,” in 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 772–779, IEEE, 2015.
  25. V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in 53rd IEEE Conference on Decision and Control, pp. 81–87, IEEE, 2014.
  26. G. A. Cardona, D. Kamale, and C.-I. Vasile, “Mixed integer linear programming approach for control synthesis with weighted signal temporal logic,” in Proceedings of the 26th International Conference on Hybrid Systems: Computation and Control, pp. 1–12, 2023.
  27. A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and robustness in multi-robot path planning with temporal logic constraints,” The International Journal of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.
  28. D. Kamale, E. Karyofylli, and C.-I. Vasile, “Automata-based optimal planning with relaxed specifications,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6525–6530, IEEE, 2021.
  29. G. A. Cardona and C.-I. Vasile, “Partial satisfaction of signal temporal logic specifications for coordination of multi-robot systems,” in Algorithmic Foundations of Robotics XV, (Cham), pp. 223–238, Springer International Publishing, 2023.
  30. G. A. Cardona and C.-I. Vasile, “Preferences on partial satisfaction using weighted signal temporal logic specifications,” in 2023 European Control Conference (ECC), pp. 1–6, IEEE, 2023.
  31. G. A. Cardona, K. Leahy, and C.-I. Vasile, “Temporal logic swarm control with splitting and merging,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2023.
  32. G. A. Cardona, D. Saldaña, and C.-I. Vasile, “Planning for modular aerial robotic tools with temporal logic constraints,” in 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 2878–2883, IEEE, 2022.
  33. K. Leahy, Z. Serlin, C.-I. Vasile, A. Schoer, A. M. Jones, R. Tron, and C. Belta, “Scalable and robust algorithms for task-based coordination from high-level specifications (scratches),” IEEE Transactions on Robotics, 2021.
  34. A. M. Jones, K. Leahy, C. Vasile, S. Sadraddini, Z. Serlin, R. Tron, and C. Belta, “Scratchs: Scalable and robust algorithms for task-based coordination from high-level specifications,” in Robotics Research: The 19th International Symposium ISRR, pp. 224–241, Springer, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.