Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible Transmission: A Comprehensive Review of Concepts, Technologies, and Market (2310.08691v1)

Published 12 Oct 2023 in eess.SY and cs.SY

Abstract: As global concerns regarding climate change are increasing worldwide, the transition towards clean energy sources has accelerated. Accounting for a large share of energy consumption, the electricity sector is experiencing a significant shift towards renewable energy sources. To accommodate this rapid shift, the transmission system requires major upgrades. Although enhancing grid capacity through transmission system expansion is always a solution, this solution is very costly and requires a protracted permitting process. The concept of flexible transmission encompasses a broad range of technologies and market tools that enable effective reconfiguration and manipulation of the power grid for leveraged dispatch of renewable energy resources. The proliferation of such technologies allows for enhanced transfer capability over the current transmission network, thus reducing the need for grid expansion projects. This paper comprehensively reviews flexible transmission technologies and their role in achieving a net-zero carbon emission grid vision. Flexible transmission definitions from different viewpoints are discussed, and mathematical measures to quantify grid flexibility are reviewed. An extensive range of technologies enhancing flexibility across the grid is introduced and explored in detail. The environmental impacts of flexible transmission, including renewable energy utilization and carbon emission reduction, are presented. Finally, market models required for creating proper incentives for the deployment of flexible transmission and regulatory barriers and challenges are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (221)
  1. V. Henze, “Cost of new renewables temporarily rises as inflation starts to bite,” Jun 2022. [Online]. Available: https://about.bnef.com/blog/cost-of-new-renewables-temporarily-rises-as-inflation-starts-to-bite
  2. United States Department of State, “The long-term strategy of united states: Pathways to net-zero greenhouse gas emissions by 2050,” Nov 2021.
  3. German Advisory Council on Environment, “Pathways towards a 100 % renewable electricity system chapter 10: Executive summary and recommendations,” Jan 2011.
  4. Regulation of the European Parliament and of the Council on the Governance of the Energy Union and Climate Action, “Denmark’s integrated national energy and climate plan,” Dec 2019.
  5. UNFCCC, “Paris agreement,” United Nations Treaty Collection, Chapter XXVII 7. d, 2018.
  6. United States Department of Energy, “Solar futures study,” Sep 2021. [Online]. Available: https://www.energy.gov/eere/solar/solar-futures-study
  7. A. Navon, P. Kulbekov, S. Dolev, G. Yehuda, and Y. Levron, “Integration of distributed renewable energy sources in israel: Transmission congestion challenges and policy recommendations,” Energy Policy, vol. 140, p. 111412, 2020.
  8. T. Conlon, M. Waite, and V. Modi, “Assessing new transmission and energy storage in achieving increasing renewable generation targets in a regional grid,” Applied Energy, vol. 250, pp. 1085–1098, 2019.
  9. United States Department of Energy, “National electric transmission congestion study,” 2020.
  10. Monitoring Analytics, “State of the market report for PJM,” 2016-2021. [Online]. Available: https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market
  11. Potomac Economics, “State of the market report for the NYISO electricity markets,” 2016-2021. [Online]. Available: https://www.potomaceconomics.com/wp-content/uploads
  12. ——, “State of the market report for the MISO electricity markets,” 2016-2021. [Online]. Available: https://www.potomaceconomics.com/wp-content/uploads
  13. SPP Market Monitoring Unit, “State of the market,” 2016-2021. [Online]. Available: https://www.spp.org/documents
  14. Potomac Economics, “State of the market report for the ERCOT electricity markets,” 2016-2021. [Online]. Available: https://www.potomaceconomics.com/wp-content/uploads
  15. ISO-NE Internal Market Monitor, “Annual market report,” 2016-2021. [Online]. Available: https://www.iso-ne.com/static-assets/documents
  16. J. Cochran, P. Denholm, B. Speer, and M. Miller, “Grid integration and the carrying capacity of the us grid to incorporate variable renewable energy,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2015.
  17. A. Bloom, L. Azar, J. Caspary, N. Miller, A. Silverstein, J. Simonelli, and R. Zavadil, “Transmission planningfor 100% clean electricity,” Energy System Integration Group, 2021.
  18. J. Li, F. Liu, Z. Li, C. Shao, and X. Liu, “Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 272–284, 2018.
  19. F. M. Albatsh, S. Mekhilef, S. Ahmad, H. Mokhlis, and M. Hassan, “Enhancing power transfer capability through flexible ac transmission system devices: a review,” Frontiers of Information Technology & Electronic Engineering, vol. 16, no. 8, pp. 658–678, 2015.
  20. M. Eslami, H. Shareef, A. Mohamed, and M. Khajehzadeh, “A survey on flexible ac transmission systems (facts),” Organ, vol. 1, p. 12, 2012.
  21. J. Zhao, T. Zheng, and E. Litvinov, “A unified framework for defining and measuring flexibility in power system,” IEEE Transactions on power systems, vol. 31, no. 1, pp. 339–347, 2015.
  22. International Energy Agency, “Harnessing variable renewables: A guide to the balancing challenge,” May 2011. [Online]. Available: https://www.oecd.org/publications/harnessing-variable-renewables-9789264111394-en.htm
  23. C. Tovar-Ramírez, C. Fuerte-Esquivel, A. M. Mares, and J. Sánchez-Garduño, “A generalized short-term unit commitment approach for analyzing electric power and natural gas integrated systems,” Electric Power Systems Research, vol. 172, pp. 63–76, 2019.
  24. K. Poplavskaya, J. Lago, S. Strömer, and L. De Vries, “Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design,” Energy Policy, vol. 158, p. 112522, 2021.
  25. J. Ma, V. Silva, R. Belhomme, D. S. Kirschen, and L. F. Ochoa, “Evaluating and planning flexibility in sustainable power systems,” in 2013 IEEE power & energy society general meeting.   IEEE, 2013, pp. 1–11.
  26. J. I. Otashu, K. Seo, and M. Baldea, “Cooperative optimal power flow with flexible chemical process loads,” AIChE Journal, vol. 67, no. 4, p. e17159, 2021.
  27. A. S. Brouwer, M. van den Broek, A. Seebregts, and A. Faaij, “Operational flexibility and economics of power plants in future low-carbon power systems,” Applied Energy, vol. 156, pp. 107–128, 2015.
  28. K. Xie, H. Zhang, and C. Singh, “Reliability forecasting models for electrical distribution systems considering component failures and planned outages,” International journal of electrical power & energy systems, vol. 79, pp. 228–234, 2016.
  29. S. Phommixay, M. L. Doumbia, and Q. Cui, “A two-stage two-layer optimization approach for economic operation of a microgrid under a planned outage,” Sustainable Cities and Society, vol. 66, p. 102675, 2021.
  30. S. Yamujala, P. Kushwaha, A. Jain, R. Bhakar, J. Wu, and J. Mathur, “A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems,” Applied Energy, vol. 304, p. 117763, 2021.
  31. K. F. Krommydas, C. N. Dikaiakos, G. P. Papaioannou, and A. C. Stratigakos, “Flexibility study of the greek power system using a stochastic programming approach for estimating reserve requirements,” Electric Power Systems Research, vol. 213, p. 108620, 2022.
  32. E. Lannoye, D. Flynn, and M. O’Malley, “Transmission, variable generation, and power system flexibility,” IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 57–66, 2014.
  33. Y. Dvorkin, D. S. Kirschen, and M. A. Ortega-Vazquez, “Assessing flexibility requirements in power systems,” IET Generation, Transmission & Distribution, vol. 8, no. 11, pp. 1820–1830, 2014.
  34. J. E. Bistline, “Turn down for what? the economic value of operational flexibility in electricity markets,” IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 527–534, 2018.
  35. H. Wu, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 2955–2964, 2014.
  36. D. Huertas-Hernando, H. Farahmand, H. Holttinen, J. Kiviluoma, E. Rinne, L. Söder, M. Milligan, E. Ibanez, S. M. Martinez, E. Gómez-Lázaro et al., “Hydropower flexibility for power systems with variable renewable energy sources: An iea task 25 collaboration,” Advances in Energy Systems: The Large-scale Renewable Energy Integration Challenge, pp. 385–405, 2019.
  37. N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control and economic dispatch from an optimization view,” IEEE Transactions on Control of Network Systems, vol. 3, no. 3, pp. 254–264, 2015.
  38. M. Sajjadi and H. Seifi, “Governor parameter estimation considering upper/lower production limits,” in 2019 IEEE Milan PowerTech.   IEEE, 2019, pp. 1–6.
  39. Y. Chen, P. Xu, J. Gu, F. Schmidt, and W. Li, “Measures to improve energy demand flexibility in buildings for demand response (dr): A review,” Energy and Buildings, vol. 177, pp. 125–139, 2018.
  40. P. Warren, “A review of demand-side management policy in the uk,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 941–951, 2014.
  41. W. Huang, N. Zhang, C. Kang, M. Li, and M. Huo, “From demand response to integrated demand response: Review and prospect of research and application,” Protection and Control of Modern Power Systems, vol. 4, no. 1, pp. 1–13, 2019.
  42. V. Venizelou, N. Philippou, M. Hadjipanayi, G. Makrides, V. Efthymiou, and G. E. Georghiou, “Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management,” Energy, vol. 142, pp. 633–646, 2018.
  43. M. Jabbari Zideh and S. S. Mohtavipour, “Two-sided tacit collusion: Another step towards the role of demand-side,” Energies, vol. 10, no. 12, p. 2045, 2017.
  44. D. Jang, J. Eom, M. G. Kim, and J. J. Rho, “Demand responses of korean commercial and industrial businesses to critical peak pricing of electricity,” Journal of Cleaner Production, vol. 90, pp. 275–290, 2015.
  45. Y. Chen, S. Mei, F. Zhou, S. H. Low, W. Wei, and F. Liu, “An energy sharing game with generalized demand bidding: Model and properties,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2055–2066, 2019.
  46. P. Van Aubel and E. Poll, “Smart metering in the netherlands: What, how, and why,” International Journal of Electrical Power & Energy Systems, vol. 109, pp. 719–725, 2019.
  47. M. Z. Degefa, I. B. Sperstad, and H. Sæle, “Comprehensive classifications and characterizations of power system flexibility resources,” Electric Power Systems Research, vol. 194, p. 107022, 2021.
  48. A. Papalexopoulos, C. Hansen, R. Frowd, A. Tuohy, and E. Lannoye, “Impact of the transmission grid on the operational system flexibility,” in 2016 Power Systems Computation Conference (PSCC).   IEEE, 2016, pp. 1–10.
  49. R. Pringles, F. Olsina, and F. Garcés, “Power transmission investment under uncertainty: A real option framework,” in 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), 2015, pp. 1–7.
  50. S. M. Amin, “Securing the electricity grid,” The Bridge, vol. 40, no. 1, pp. 19–20, 2010.
  51. Brattle Group, “Unlocking the queue with grid enhancing technologies,” 2021. [Online]. Available: https://www.brattle.com/wp-content/uploads/2021/06/21200_unlocking_the_queue_with_grid_enhancing_technologies.pdf
  52. U.S. Department of Energy, “Grid Enhancing Technologies - A Case Study on Ratepayer Impact - February 2022,” U.S. Department of Energy, 2022, Executive Summary. [Online]. Available: {https://www.energy.gov/sites/default/files/2022-04}
  53. M. Sahraei-Ardakani, X. Li, P. Balasubramanian, K. Hedman, and M. Abdi-Khorsand, “Real-time contingency analysis with transmission switching on real power system data,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2501–2502, 2015.
  54. Y. Sang, M. Sahraei-Ardakani, and M. Parvania, “Stochastic transmission impedance control for enhanced wind energy integration,” IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1108–1117, 2017.
  55. A. Khodaei and M. Shahidehpour, “Transmission switching in security-constrained unit commitment,” IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1937–1945, 2010.
  56. M. Lu, Z. Dong, and T. Saha, “Transmission expansion planning flexibility,” in 2005 International Power Engineering Conference.   IEEE, 2005, pp. 893–898.
  57. A. Khodaei, M. Shahidehpour, and S. Kamalinia, “Transmission switching in expansion planning,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp. 1722–1733, 2010.
  58. G. Hamoud, “Assessment of available transfer capability of transmission systems,” IEEE Transactions on Power systems, vol. 15, no. 1, pp. 27–32, 2000.
  59. E. Bajrektarevic, S. Kang, V. Kotecha, S. Kolluri, M. Nagle, S. Datta, M. Papic, J. Useldinger, P. Patro, L. Hopkins et al., “Identifying optimal remedial actions for mitigating violations and increasing available transfer capability in planning and operations environments,” in CIGRE, Paris, France, 2006.
  60. F. E. R. C. (FERC), “Order no. 889,” Aug 2020. [Online]. Available: https://www.ferc.gov/industries-data/electric/industry-activities/open-access-transmission-tariff-oatt-reform/history-of-oatt-reform/order-no-889-1
  61. O. O. Mohammed, M. W. Mustafa, D. S. S. Mohammed, and A. O. Otuoze, “Available transfer capability calculation methods: A comprehensive review,” International Transactions on Electrical Energy Systems, vol. 29, no. 6, p. e2846, 2019.
  62. M. Karuppasamypandiyan, P. A. Jeyanthy, D. Devaraj, and V. A. I. Selvi, “Day ahead dynamic available transfer capability evaluation incorporating probabilistic transmission capacity margins in presence of wind generators,” International Transactions on Electrical Energy Systems, vol. 31, no. 1, p. e12693, 2021.
  63. M. Aman, G. Jasmon, A. Bakar, and H. Mokhlis, “Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem,” International journal of electrical power & energy systems, vol. 54, pp. 123–133, 2014.
  64. A. Nadia, A. H. Chowdhury, E. Mahfuj, M. S. Hossain, K. Z. Islam, and M. I. Rahman, “Determination of transmission reliability margin using ac load flow,” AIMS Energy, vol. 8, no. 4, pp. 701–720, 2020.
  65. O. O. Mohammed, M. W. Mustafa, M. N. Aman, S. Salisu, and A. O. Otuoze, “Capacity benefit margin assessment in the presence of renewable energy,” International Transactions on Electrical Energy Systems, vol. 30, no. 9, p. etep12502, 2020.
  66. S. J. Chen, Q. X. Chen, Q. Xia, and C. Q. Kang, “Steady-state security assessment method based on distance to security region boundaries,” IET Generation, Transmission & Distribution, vol. 7, no. 3, pp. 288–297, 2013.
  67. H. D. Nguyen, K. Dvijotham, and K. Turitsyn, “Constructing convex inner approximations of steady-state security regions,” IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 257–267, 2018.
  68. P. Bresesti, A. Capasso, M. Falvo, and S. Lauria, “Power system planning under uncertainty conditions. criteria for transmission network flexibility evaluation,” in 2003 IEEE Bologna Power Tech Conference Proceedings,, vol. 2.   IEEE, 2003, pp. 6–pp.
  69. J. H. Zhao, Z. Y. Dong, P. Lindsay, and K. P. Wong, “Flexible transmission expansion planning with uncertainties in an electricity market,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 479–488, 2009.
  70. A. Capasso, A. Cervone, M. Falvo, R. Lamedica, G. Giannuzzi, and R. Zaottini, “Bulk indices for transmission grids flexibility assessment in electricity market: A real application,” International Journal of Electrical Power & Energy Systems, vol. 56, pp. 332–339, 2014.
  71. E. A. Goldis, P. A. Ruiz, M. C. Caramanis, X. Li, C. R. Philbrick, and A. M. Rudkevich, “Shift factor-based scopf topology control mip formulations with substation configurations,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1179–1190, 2016.
  72. M. Sahraei-Ardakani and K. W. Hedman, “A fast lp approach for enhanced utilization of variable impedance based facts devices,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2204–2213, 2015.
  73. F. Capitanescu, “Enhanced risk-based scopf formulation balancing operation cost and expected voluntary load shedding,” Electric Power Systems Research, vol. 128, pp. 151–155, 2015.
  74. N. G. Hingorani, “Flexible ac transmission,” IEEE spectrum, vol. 30, no. 4, pp. 40–45, 1993.
  75. E. Gholipour and S. Saadate, “Improving of transient stability of power systems using upfc,” IEEE Transactions on power delivery, vol. 20, no. 2, pp. 1677–1682, 2005.
  76. M. A. Sayed and T. Takeshita, “All nodes voltage regulation and line loss minimization in loop distribution systems using upfc,” IEEE Transactions on power electronics, vol. 26, no. 6, pp. 1694–1703, 2010.
  77. M. Zarghami, M. L. Crow, and S. Jagannathan, “Nonlinear control of facts controllers for damping interarea oscillations in power systems,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3113–3121, 2010.
  78. P. Asare, T. Diez, A. Galli, E. O’Neill-Carillo, J. Robertson, and R. Zhao, “An overview of flexible ac transmission systems,” ECE Technical Reports, 1994. [Online]. Available: http://docs.lib.purdue.edu/ecetr/205
  79. V. Kakkar and N. Agarwal, “Recent trends on FACTS and D-FACTS,” in 2010 Modern Electric Power Systems.   IEEE, 2010, pp. 1–8.
  80. A. A. Abdelsalam, H. A. Gabbar, and A. M. Sharaf, “Performance enhancement of hybrid AC/DC microgrid based D-FACTS,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 382–393, 2014.
  81. X. Rui, M. Sahraei-Ardakani, and T. R. Nudell, “Linear modelling of series facts devices in power system operation models,” IET Generation, Transmission & Distribution, vol. 16, no. 6, pp. 1047–1063, 2022.
  82. N. Acharya, A. Sode-Yome, and N. Mithulananthan, “Facts about flexible ac transmission systems (facts) controllers: practical installations and benefits,” in Australasian universities power engineering conference (AUPEC), Australia.   Citeseer, 2005, pp. 533–538.
  83. J. J. Paserba, “How facts controllers benefit ac transmission systems,” in IEEE Power Engineering Society General Meeting, 2004.   IEEE, 2004, pp. 1257–1262.
  84. X. Zhang, D. Shi, Z. Wang, B. Zeng, X. Wang, K. Tomsovic, and Y. Jin, “Optimal allocation of series facts devices under high penetration of wind power within a market environment,” IEEE Transactions on power systems, vol. 33, no. 6, pp. 6206–6217, 2018.
  85. Y. Sang and M. Sahraei-Ardakani, “Effective power flow control via distributed facts considering future uncertainties,” Electric Power Systems Research, vol. 168, pp. 127–136, 2019.
  86. O. Mirzapour and M. Sahraei-Ardakani, “Environmental impacts of power flow control with variable-impedance facts,” in 2020 52nd North American Power Symposium (NAPS).   IEEE, 2021, pp. 1–6.
  87. X. Li, P. Balasubramanian, M. Sahraei-Ardakani, M. Abdi-Khorsand, K. W. Hedman, and R. Podmore, “Real-time contingency analysis with corrective transmission switching,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 2604–2617, 2016.
  88. Northeast Power Coordinating Council, “Npcc regional reliability reference directory # 7 remedial action schemes.”
  89. K. W. Hedman, S. S. Oren, and R. P. O’Neill, “A review of transmission switching and network topology optimization,” in 2011 IEEE power and energy society general meeting.   IEEE, 2011, pp. 1–7.
  90. M. Abdi-Khorsand, M. Sahraei-Ardakani, and Y. M. Al-Abdullah, “Corrective transmission switching for n-1-1 contingency analysis,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1606–1615, 2016.
  91. System Planning Division Transmission Planning Department PJM, “manual 07: pjm protection standards.”
  92. S. R. Salkuti, “Congestion management using optimal transmission switching,” IEEE Systems Journal, vol. 12, no. 4, pp. 3555–3564, 2018.
  93. E. B. Fisher, R. P. O’Neill, and M. C. Ferris, “Optimal transmission switching,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1346–1355, 2008.
  94. P. Henneaux and D. S. Kirschen, “Probabilistic security analysis of optimal transmission switching,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 508–517, 2015.
  95. M. Khanabadi, H. Ghasemi, and M. Doostizadeh, “Optimal transmission switching considering voltage security and n-1 contingency analysis,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 542–550, 2012.
  96. K. W. Hedman, S. S. Oren, and R. P. O’Neill, “Optimal transmission switching: economic efficiency and market implications,” Journal of Regulatory Economics, vol. 40, no. 2, pp. 111–140, 2011.
  97. H. Wang and K.-W. Ma, “Igbt technology for future high-power vsc-hvdc applications,” in 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), 2016, pp. 1–6.
  98. K. Shenai, “The invention and demonstration of the igbt [a look back],” ieee Power electronics magazine, vol. 2, no. 2, pp. 12–16, 2015.
  99. J. Danielsson, S. Patel, J. Pan, and R. Nuqui, “Transmission grid reinforcement with embedded vsc-hvdc,” in Proc. CIGRE US National Committee 2015-Grid of the Future Symposium, Chicago, USA, 2015, pp. 1–7.
  100. Bloomberg NEF, “Technologies for High Voltage Transmission,” BNEF, Tech. Rep., 2017.
  101. U.S. Department of Energy, “Advanced Transmission Technologies,” U.S. Department of Energy, Tech. Rep., December 2020.
  102. X. Gu, S. He, Y. Xu, Y. Yan, S. Hou, and M. Fu, “Partial discharge detection on 320 kv vsc-hvdc xlpe cable with artificial defects under dc voltage,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 3, pp. 939–946, 2018.
  103. Y. Shu and W. Chen, “Research and application of uhv power transmission in china,” High voltage, vol. 3, no. 1, pp. 1–13, 2018.
  104. W. Long and S. Nilsson, “Hvdc transmission: yesterday and today,” IEEE Power and Energy Magazine, vol. 5, no. 2, pp. 22–31, 2007.
  105. A. Korompili, Q. Wu, and H. Zhao, “Review of vsc hvdc connection for offshore wind power integration,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1405–1414, 2016.
  106. J. Sun, M. Li, Z. Zhang, T. Xu, J. He, H. Wang, and G. Li, “Renewable energy transmission by hvdc across the continent: system challenges and opportunities,” CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 353–364, 2017.
  107. N. R. Watson and J. D. Watson, “An overview of HVDC technology,” Energies, vol. 13, no. 17, p. 4342, 2020.
  108. Y. Wen, C. Chung, and X. Ye, “Enhancing frequency stability of asynchronous grids interconnected with hvdc links,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1800–1810, 2017.
  109. V. E. Wendt, “2030 15% interconnection target: Challenges & solutions for a timely project implementation,” Vienna: EuropaCable, 2015.
  110. H. Rao, W. Wu, T. Mao, B. Zhou, C. Hong, Y. Liu, and X. Wu, “Frequency control at the power sending side for hvdc asynchronous interconnections between yunnan power grid and the rest of csg,” CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 105–113, 2020.
  111. A. Alassi, S. Bañales, O. Ellabban, G. Adam, and C. MacIver, “Hvdc transmission: technology review, market trends and future outlook,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 530–554, 2019.
  112. B. Li, T. Liu, W. Xu, Q. Li, Y. Zhang, Y. Li, and X. Y. Li, “Research on technical requirements of line-commutated converter-based high-voltage direct current participating in receiving end ac system’s black start,” IET Generation, Transmission & Distribution, vol. 10, no. 9, pp. 2071–2078, 2016.
  113. L. Xiong, X. Liu, Y. Liu, and F. Zhuo, “Modeling and stability issues of voltage-source converter dominated power systems: A review,” CSEE Journal of Power and Energy Systems, 2020.
  114. P. Rodriguez and K. Rouzbehi, “Multi-terminal dc grids: challenges and prospects,” Journal of Modern Power Systems and Clean Energy, vol. 5, no. 4, pp. 515–523, 2017.
  115. X. Xiang, M. M. C. Merlin, and T. C. Green, “Cost analysis and comparison of hvac, lfac and hvdc for offshore wind power connection,” in 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), 2016, pp. 1–6.
  116. Z. Chen, Z. Yu, X. Zhang, T. Wei, G. Lyu, L. Qu, Y. Huang, and R. Zeng, “Analysis and experiments for igbt, iegt, and igct in hybrid dc circuit breaker,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 2883–2892, 2017.
  117. G. C. Montanari, P. H. Morshuis, M. Zhou, G. C. Stevens, A. S. Vaughan, Z. Han, and D. Li, “Criteria influencing the selection and design of hv and uhv dc cables in new network applications,” High Voltage, vol. 3, no. 2, pp. 90–95, 2018.
  118. S. Rahman, I. Khan, H. I. Alkhammash, and M. F. Nadeem, “A comparison review on transmission mode for onshore integration of offshore wind farms: Hvdc or hvac,” Electronics, vol. 10, no. 12, p. 1489, 2021.
  119. R. Mihalič and U. Gabrijel, “Transient stability assessment of systems comprising phase-shifting facts devices by direct methods,” International journal of electrical power & energy systems, vol. 26, no. 6, pp. 445–453, 2004.
  120. M. Sajjadi and Y. Majd, “Svpwm-based dual active filter for distribution system power quality improvement,” in 2021 6th International Conference on Power and Renewable Energy (ICPRE).   IEEE, 2021, pp. 592–597.
  121. Siemens Energy, “Phase-shifting transformers,” 2022, accessed = 2022-12-02. [Online]. Available: https://www.siemens-energy.com/global/en/offerings/power-transmission/portfolio/transformers/phase-shifting-transformers.html
  122. C.-N. Huang, “Feature analysis of power flows based on the allocations of phase-shifting transformers,” IEEE transactions on power systems, vol. 18, no. 1, pp. 266–272, 2003.
  123. D. Rasolomampionona and S. Anwar, “Interaction between phase shifting transformers installed in the tie-lines of interconnected power systems and automatic frequency controllers,” International Journal of Electrical Power & Energy Systems, vol. 33, no. 8, pp. 1351–1360, 2011.
  124. J. Verboomen, G. Papaefthymiou, W. Kling, and L. Van der Sluis, “Use of phase shifting transformers for minimising congestion risk,” in Proceedings of the 10th International Conference on Probablistic Methods Applied to Power Systems.   IEEE, 2008, pp. 1–6.
  125. L. Ippolito and P. Siano, “Selection of optimal number and location of thyristor-controlled phase shifters using genetic based algorithms,” IEE Proceedings-Generation, Transmission and Distribution, vol. 151, no. 5, pp. 630–637, 2004.
  126. E. Urresti-Padrón, M. Jakubek, W. Jaworski, and M. Kłos, “Pre-selection of the optimal sitting of phase-shifting transformers based on an optimization problem solved within a coordinated cross-border congestion management process,” Energies, vol. 13, no. 14, p. 3748, 2020.
  127. D. O. Sidea, L. Toma, and M. Eremia, “Sizing a phase shifting transformer for congestion management in high wind generation areas,” in 2017 IEEE Manchester PowerTech.   IEEE, 2017, pp. 1–6.
  128. R. Korab and R. Owczarek, “Impact of phase shifting transformers on cross-border power flows in the central and eastern europe region,” Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 64, no. 1, 2016.
  129. A. Nikoobakht, J. Aghaei, R. Khatami, E. Mahboubi-Moghaddam, and M. Parvania, “Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources,” Applied energy, vol. 238, pp. 225–238, 2019.
  130. E. Fernandez, I. Albizu, M. Bedialauneta, A. Mazon, and P. T. Leite, “Review of dynamic line rating systems for wind power integration,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 80–92, 2016.
  131. C. J. Wallnerström, Y. Huang, and L. Söder, “Impact from dynamic line rating on wind power integration,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 343–350, 2014.
  132. A. Michiorri, H.-M. Nguyen, S. Alessandrini, J. B. Bremnes, S. Dierer, E. Ferrero, B.-E. Nygaard, P. Pinson, N. Thomaidis, and S. Uski, “Forecasting for dynamic line rating,” Renewable and sustainable energy reviews, vol. 52, pp. 1713–1730, 2015.
  133. Federal Energy Regulatory Commission (FERC), “Managing transmission line ratings,” 2019. [Online]. Available: https://www.ferc.gov/sites/default/files/2020-05/tran-line-ratings.pdf
  134. Idaho National Laboratory, “Dynamic Line Rating Overview,” 2021.
  135. K. Hur, M. Boddeti, N. Sarma, J. Dumas, J. Adams, and S.-K. Chai, “High-wire act,” IEEE Power and Energy Magazine, vol. 8, no. 1, pp. 37–45, 2009.
  136. Y. Li, B. Hu, K. Xie, L. Wang, Y. Xiang, R. Xiao, and D. Kong, “Day-ahead scheduling of power system incorporating network topology optimization and dynamic thermal rating,” IEEE Access, vol. 7, pp. 35 287–35 301, 2019.
  137. U.S. Department of Energy, “Improving Efficiency with Dynamic Line Ratings,” 2017.
  138. Potomac Economics, “2020 MISO State of the Market Report,” https://www.potomaceconomics.com/wp-content/uploads/2021/05/2020-MISO-SOM_Report_Body_Compiled_Final_rev-6-1-21.pdf, 2021.
  139. California Independent System Operator, “Comments on Managing Transmission Line Ratings,” https://www.caiso.com/Documents/Mar22-2021-Comments-ManagingTransmissionLineRatings-RM20-16.pdf, 2021.
  140. ISO New England, “ISO-NE Order 881 Presentation,” https://www.iso-ne.com/static-assets/documents/2022/04/a4_order_881_presentation.pdf, 2022.
  141. New York Independent System Operator (NYISO), “NYISO - FERC Order 881,” https://www.nyiso.com/documents/20142/29177064/03162022%20NYISO%20-%20FERC%20Order%20881%20v2.pdf/38819aac-890f-5412-a945-ad6817c6676e, 2022.
  142. Southwest Power Pool (SPP), “Order No. 881 Compliance Filing to Implement Transmission Line Ratings,” https://www.spp.org/documents/67491/20220712_order%20no.%20881%20compliance%20filing%20to%20implement%20transmission%20line%20ratings_er22-2339-000.pdf, 2022.
  143. Federal Energy Regulatory Commission (FERC), “Order No. 1000: Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities,” Federal Register, vol. 76, no. 125, pp. 38402-38475, 14 July 2011, 2011.
  144. C. Shao, Y. Ding, and J. Wang, “A low-carbon economic dispatch model incorporated with consumption-side emission penalty scheme,” Applied Energy, vol. 238, pp. 1084–1092, 2019.
  145. Y. Sun, C. Kang, Q. Xia, Q. Chen, N. Zhang, and Y. Cheng, “Analysis of transmission expansion planning considering consumption-based carbon emission accounting,” Applied energy, vol. 193, pp. 232–242, 2017.
  146. A. H. Seddighi and A. Ahmadi-Javid, “Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment,” Energy, vol. 86, pp. 9–18, 2015.
  147. B. Lokeshgupta and S. Sivasubramani, “Multi-objective dynamic economic and emission dispatch with demand side management,” International Journal of Electrical Power & Energy Systems, vol. 97, pp. 334–343, 2018.
  148. H. Park, Y. G. Jin, and J.-K. Park, “Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating,” International Journal of Electrical Power & Energy Systems, vol. 102, pp. 211–222, 2018.
  149. M. Peker, A. S. Kocaman, and B. Y. Kara, “Benefits of transmission switching and energy storage in power systems with high renewable energy penetration,” Applied Energy, vol. 228, pp. 1182–1197, 2018.
  150. M. Jabarnejad, “Facilitating emission reduction using the dynamic line switching and rating,” Electric Power Systems Research, vol. 189, p. 106600, 2020.
  151. O. Mirzapour, X. Rui, and M. Sahraei-Ardakani, “Transmission impedance control impacts on carbon emissions and renewable energy curtailment,” Energy, vol. 278, p. 127741, 2023.
  152. E. Ela, M. Milligan, A. Bloom, A. Botterud, A. Townsend, and T. Levin, “Evolution of wholesale electricity market design with increasing levels of renewable generation,” NREL, 2014.
  153. Y. Wu, M. Barati, and G. J. Lim, “A pool strategy of microgrid in power distribution electricity market,” IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 3–12, 2019.
  154. M. Sahraei-Ardakani, “Merchant power flow controllers,” Energy Economics, vol. 74, pp. 878–885, 2018.
  155. M. Sahraei-Ardakani and S. A. Blumsack, “Transfer capability improvement through market-based operation of series facts devices,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3702–3714, 2015.
  156. M. Sahraei-Ardakani and S. Blumsack, “Active participation of facts devices in wholesale electricity markets,” in Proc. of 31 USAEE North American Conference.   Citeseer, 2012.
  157. ——, “Market equilibrium for dispatchable transmission using fact devices,” in 2012 IEEE Power and Energy Society General Meeting.   IEEE, 2012, pp. 1–6.
  158. M. Sahraei-Ardakani and S. A. Blumsack, “Marginal value of facts devices in transmission-constrained electricity markets,” in 2013 IEEE Power & Energy Society General Meeting.   IEEE, 2013, pp. 1–5.
  159. J. D. Fuller, R. Ramasra, and A. Cha, “Fast heuristics for transmission-line switching,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1377–1386, 2012.
  160. PJM Planning Division, “Grid of the Future: PJM’s Regional Planning Perspective,” May 2022, last accessed 5 February 2023. [Online]. Available: https://pjm.com/-/media/library/reports-notices/special-reports/2022/20220510-grid-of-the-future-pjms-regional-planning-perspective.ashx
  161. M. O’Driscoll, “FERC Rule to improve transmission line ratings will help lower transmission costs,” December 2021, last accessed 18 January 2023. [Online]. Available: https://www.ferc.gov/news-events/news/ferc-rule-improve-transmission-line-ratings-will-help-lower-transmission-costs
  162. Workshop to discuss certain performance-based ratemaking approaches. Accessed: 2022-11-19. [Online]. Available: https://www.ferc.gov/news-events/events/workshop-discuss-certain-performance-based-ratemaking-approaches-09102021
  163. PJM, “Potential additional issues relating to the implementation of dynamic line ratings,” August 2022, last accessed 5 July 2023. [Online]. Available: https://www.pjm.com/-/media/committees-groups/task-forces/dlrtf/postings/dlrtf-problem-statement.ashx
  164. G. Jesmer, “FERC Order No. 881 Compliance,” March 2022, last accessed 5 July 2023. [Online]. Available: https://www.iso-ne.com/static-assets/documents/2022/03/a4_order_no_881_compliance_incorporation_of_ambient_adjusted_line_ratings.pdf
  165. K. Rogers and T. J. Overbye, “Some applications of distributed flexible ac transmission system (d-facts) devices in power systems,” in 2008 40th North American Power Symposium.   IEEE, 2008, pp. 1–8.
  166. A. Soroudi, “Controllable transmission networks under demand uncertainty with modular facts,” International Journal of Electrical Power & Energy Systems, vol. 130, p. 106978, 2021.
  167. PJM, “The benefits of the PJM transmission system,” April 2019, last accessed 19 January 2023. [Online]. Available: https://www.pjm.com/-/media/library/reports-notices/special-reports/2019/the-benefits-of-the-pjm-transmission-system.pdf
  168. ISO New England Inc., “2021 Regional System Plan.”
  169. ——, “Transmission planning technical guide,” February 2022. [Online]. Available: https://www.iso-ne.com/static-assets/documents/2022/02/transmission_planning_technical_guide_rev7_2.pdf
  170. California ISO, “2021-2022 transmission plan,” March 2022, last accessed 30 January 2023. [Online]. Available: http://www.caiso.com/InitiativeDocuments/ISOBoardApproved-2021-2022TransmissionPlan.pdf
  171. PJM Transmission Expansion Advisory Committee, “Reliability analysis update,” January 2018, last accessed 30 January 2023. [Online]. Available: https://www.pjm.com/-/media/committees-groups/committees/teac/20180111/20180111-reliability-analysis-update.ashx
  172. M. Balaban, “NYPA completes electric grid project to improve reliability and bring more renewable energy downstate,” June 2016, last accessed 30 January 2023. [Online]. Available: https://www.nypa.gov/news/press-releases/2016/20160614-marcy-south-completed
  173. U.S. Department of Energy, “Advanced transmission technologies,” December 2020, last accessed 30 January 2023. [Online]. Available: https://www.energy.gov/sites/prod/files/2021/02/f82/Advanced%20Transmission%20Technologies%20Report%20-%20final%20as%20of%2012.3%20-%20FOR%20PUBLIC.pdf
  174. GE Grid Solutions. Series compensation systems. Last accessed 6 February 2023. [Online]. Available: https://www.gegridsolutions.com/products/brochures/powerD_vtf/SeriesCompensation_GEA12785C_LR.pdf
  175. Hitachi Energy. Thyristor controlled series compensation. Last accessed 6 February 2023. [Online]. Available: https://www.hitachienergy.com/us/en/products-and-solutions/facts/thyristor-controlled-series-compensation
  176. Siemens Energy. Flexible AC transmission systems. Last accessed 6 February 2023. [Online]. Available: https://www.siemens-energy.com/global/en/offerings/power-transmission/portfolio/flexible-ac-transmission-systems.html
  177. Siemens Energy, “UPFC PLUS.”
  178. SmartValveT⁢M𝑇𝑀{}^{TM}start_FLOATSUPERSCRIPT italic_T italic_M end_FLOATSUPERSCRIPT. SmartWires. Last accessed 6 February 2023. [Online]. Available: https://www.smartwires.com/smartvalve/
  179. T. B. Tsuchida and R. Gramlich, “Improving transmission operation with advanced technologies: A review of deployment experience and analysis of incentives,” June 2019, last accessed 6 February 2023. [Online]. Available: https://www.brattle.com/wp-content/uploads/2021/05/16634_improving_transmission_operating_with_advanced_technologies.pdf
  180. P. A. Ruiz, M. Caramanis, E. Goldis, X. Li, K. Patel, R. Philbrick, A. Rudkevich, R. Tabors, and B. Tsuchida, “Transmission topology optimization,” June 2016, last accessed 6 February 2023. [Online]. Available: https://cms.ferc.gov/sites/default/files/2020-05/20160629114654-2%2520-%2520PRuiz%2520FERCTechConf%252028Jun2016_FINAL_2.pdf
  181. P. A. Ruiz, J. Caspary, and L. Butler, “Transmission topology optimization case studies in SPP and ERCOT,” June 2020, last accessed 6 February 2023. [Online]. Available: https://www.ferc.gov/sites/default/files/2020-06/W3-1_Ruiz_et_al.pdf
  182. PJM. Swithcing solutions. Last accessed 6 February 2023. [Online]. Available: https://www.pjm.com/markets-and-operations/etools/oasis/system-information/switching-solutions
  183. Advanced Research Projects Agency - Energy. NewGrid. Last accessed 6 February 2023. [Online]. Available: https://arpa-e.energy.gov/technologies/scaleup-launch-pad-2020/newgrid
  184. P. A. Ruiz and J. Caspary, “SPP transmission topology optimization pilot,” March 2019, last accessed 5 July 2023. [Online]. Available: https://watt-transmission.org/wp-content/uploads/2019/03/spp-transmission-topology-optimization-pilot-efficient-congestion-management-and-overload-mitigation-through-system-reconfigurations-.pdf
  185. U.S. Department of Energy, “Improving efficiency with dynamic line ratings,” last accessed 31 January 2023. [Online]. Available: https://www.energy.gov/sites/prod/files/2017/01/f34/NYPA_Improving-Efficiency-Dynamic-Line-Ratings.pdf
  186. PJM Inside Lines, “PJM facilitating dynamic line rating implementation,” March 2022, last accessed 18 January 2023. [Online]. Available: https://insidelines.pjm.com/pjm-facilitating-dynamic-line-rating-implementation/
  187. Federal Energy Regulatory Commission, “Managing transmission line ratings,” August 2019, last accessed 23 January 2023. [Online]. Available: https://www.ferc.gov/sites/default/files/2020-05/tran-line-ratings.pdf
  188. U.S. Department of Energy, “Dynamic line rating,” June 2019, last accessed 19 January 2023. [Online]. Available: https://www.energy.gov/sites/default/files/2021/03/f83/DLR%20Report%20-%20June%202019%20final%20-%20FOR%20PUBLIC%20USE.pdf
  189. D. Hislop, “Managing transmission line ratings,” February 2022, last accessed 31 January 2023. [Online]. Available: https://www.pjm.com/-/media/committees-groups/committees/oc/2022/20220210/20220210-item-09-managing-transmission-line-ratings-order-no-881-compliance-filing-rm20-16-000-presentation.ashx
  190. LineVision. Technology. Last accessed 31 January 2023. [Online]. Available: https://www.linevisioninc.com/technology
  191. Operato. SUMO. Last accessed 31 January 2023. [Online]. Available: https://www.operato.eu/sumo
  192. Smart Wires. Smart Wires extends commercial offering by partnering with software provider Operato. Last accessed 31 January 2023. [Online]. Available: https://www.smartwires.com/2022/08/10/smart-wires-partners-with-software-provider/
  193. B. Cook, M. J. Thompson, K. Garg, and M. Malichkar, “Phase-shifting transformer control and protection settings verification,” in 2018 71st Annual Conference for Protective Relay Engineers (CPRE).   IEEE, 2018, pp. 1–15.
  194. California ISO, “Business requirements specification,” September 2017. [Online]. Available: https://www.caiso.com/Documents/BusinessRequirementsSpecification-PhaseShifterModeling.pdf
  195. New York ISO, “Manual 11 day-ahead scheduling manual,” December 2022, last accessed 29 January 2023. [Online]. Available: https://www.nyiso.com/documents/20142/2923301/dayahd_schd_mnl.pdf/0024bc71-4dd9-fa80-a816-f9f3e26ea53a
  196. H. Hui, C.-N. Yu, R. Surendran, F. Gao, and S. Moorty, “Wind generation scheduling and coordination in ercot nodal market,” in 2012 IEEE Power and Energy Society General Meeting.   IEEE, 2012, pp. 1–8.
  197. California ISO, “CAISO transmission planning process,” March 2022, last accessed 1 February 2023. [Online]. Available: http://www.caiso.com/Documents/Presentation-CaliforniaISOAnnualInterregionalInformationMar042022.pdf
  198. A. Myott, “Internal controllable lines,” February 2022, last accessed 1 February 2023. [Online]. Available: https://www.nyiso.com/documents/20142/28227906/Internal%20Controllable%20Lines_02032022_FINAL.pdf/6ea8f352-aa78-2888-5f1b-9a5e0075da58
  199. Clean Path NY. Environmental Benefits. Last accessed 2 February 2023. [Online]. Available: https://www.cleanpathny.com/environmental-benefits
  200. Champlain Hudson Power Express. The Technology. Last accessed 2 February 2023. [Online]. Available: https://chpexpress.com/project-overview/the-technology/
  201. S. Frenkel, “SOO Green HVDC Link,” May 2020, last accessed 2 February 2023. [Online]. Available: https://www.pjm.com/-/media/committees-groups/committees/mrc/2020/20200522-hvdc/20200522-item-03-soo-green-hvdc-link-presentation.ashx
  202. PJM, “High Voltage Direct Current Senior Task Force (HVDCSTF) Final Report,” December 2021, last accessed 2 February 2023. [Online]. Available: https://www.pjm.com/-/media/committees-groups/task-forces/hvdcstf/postings/hvdc-final-report.ashx
  203. GE Grid Solutions, “High voltage direct current systems,” 2016, last accessed 2 February 2023. [Online]. Available: https://resources.gegridsolutions.com/hvdc/hvdc-systems-brochure
  204. Hitachi Energy. HVDC. Last accessed 2 February 2023. [Online]. Available: https://www.hitachienergy.com/us/en/products-and-solutions/hvdc
  205. A. F. Alrasheedi, K. A. Alnowibet, and A. M. Alshamrani, “A unit commitment based-co-optimization of generation and transmission expansion planning to mitigate market power,” Electric Power Systems Research, vol. 214, p. 108860, 2023.
  206. I. Opgrand and J. Jeffrey, “The role of auction revenue rights in markets for financial transmission rights,” Bid, vol. 1, p. 1, 2019.
  207. T. Kuosmanen and T. Nguyen, “Capital bias in the nordic revenue cap regulation: Averch-johnson critique revisited,” Energy Policy, vol. 139, p. 111355, 2020.
  208. R. Aazami, M. R. Haghifam, and M. Doostizadeh, “Comprehensive modeling of flexible transmission services in stochastic joint energy and spinning reserve market,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 1354–1362, 2012.
  209. P. Staudt and S. S. Oren, “Merchant transmission in single-price electricity markets with cost-based redispatch,” Energy Economics, vol. 104, p. 105610, 2021.
  210. P. L. Joskow, “Competition for electric transmission projects in the usa: Ferc order 1000,” Transmission Network Investment in Liberalized Power Markets, pp. 275–322, 2020.
  211. R. H. Schulte and F. C. Fletcher, “Why the vision of interregional electric transmission development in ferc order 1000 is not happening,” The Electricity Journal, vol. 33, no. 6, p. 106773, 2020.
  212. P. Matschoss, B. Bayer, H. Thomas, and A. Marian, “The german incentive regulation and its practical impact on the grid integration of renewable energy systems,” Renewable Energy, vol. 134, pp. 727–738, 2019.
  213. L. Marques, A. Sanjab, Y. Mou, H. Le Cadre, and K. Kessels, “Grid impact aware tso-dso market models for flexibility procurement: Coordination, pricing efficiency, and information sharing,” IEEE Transactions on Power Systems, 2022.
  214. M. Håberg, “Fundamentals and recent developments in stochastic unit commitment,” International Journal of Electrical Power & Energy Systems, vol. 109, pp. 38–48, 2019.
  215. S. Lumbreras and A. Ramos, “The new challenges to transmission expansion planning. survey of recent practice and literature review,” Electric Power Systems Research, vol. 134, pp. 19–29, 2016.
  216. M. Sahraei-Ardakani and K. W. Hedman, “Computationally efficient adjustment of facts set points in dc optimal power flow with shift factor structure,” IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 1733–1740, 2016.
  217. B. Kocuk, S. S. Dey, and X. A. Sun, “New formulation and strong misocp relaxations for ac optimal transmission switching problem,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4161–4170, 2017.
  218. Y. Bai, H. Zhong, Q. Xia, and C. Kang, “A two-level approach to ac optimal transmission switching with an accelerating technique,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1616–1625, 2016.
  219. V. Vita, C. Christodoulou, I. Zafeiropoulos, I. Gonos, M. Asprou, and E. Kyriakides, “Evaluating the flexibility benefits of smart grid innovations in transmission networks,” Applied Sciences, vol. 11, no. 22, p. 10692, 2021.
  220. C. Eid, P. Codani, Y. Chen, Y. Perez, and R. Hakvoort, “Aggregation of demand side flexibility in a smart grid: A review for european market design,” in 2015 12th International Conference on the European Energy Market (EEM).   IEEE, 2015, pp. 1–5.
  221. J. A. Schachter and P. Mancarella, “A critical review of real options thinking for valuing investment flexibility in smart grids and low carbon energy systems,” Renewable and Sustainable Energy Reviews, vol. 56, pp. 261–271, 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.