Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbounded device-independent quantum key rates from arbitrarily small non-locality (2310.08635v3)

Published 12 Oct 2023 in quant-ph

Abstract: Device-independent quantum key distribution allows for proving the security of a shared cryptographic key between two distant parties with potentially untrusted devices. The security proof is based on the measurement outcome statistics (correlation) of a Bell experiment, and security is guaranteed by the laws of quantum theory. While it is known that the observed correlation must be Bell non-local in order to prove security, recent results show that Bell non-locality is in general not sufficient for standard device-independent quantum key distribution. In this work, we show that conversely, there is no lower bound on the amount of non-locality that is sufficient for device-independent quantum key distribution. Even more so, we show that from certain correlations that exhibit arbitrarily small non-locality, one can still extract unbounded device-independent key rates. Therefore, a quantitative relation between device-independent key rates and Bell non-locality cannot be drawn in general. Our main technique comprises a rigorous connection between self-testing and device-independent quantum key distribution, applied to a recently discovered family of Bell inequalities with arbitrarily many measurement outcomes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. V. S. Miller, in Advances in Cryptology — CRYPTO ’85 Proceedings (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986) pp. 417–426.
  2. N. Koblitz, Mathematics of computation 48, 203 (1987).
  3. I. Csiszár and J. Körner, IEEE Transactions on Information Theory 24, 339 (1978).
  4. R. Ahlswede and I. Csiszár, IEEE Transactions on Information Theory 39, 1121 (1993).
  5. U. M. Maurer, IEEE Transactions on Information Theory 39, 733 (1993).
  6. I. Devetak and A. Winter, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, 207–235 (2005).
  7. U. Vazirani and T. Vidick, Physical Review Letters 113, 140501 (2014).
  8. R. Arnon-Friedman, Springer Theses  (2020), 10.1007/978-3-030-60231-4.
  9. I. Šupić and J. Bowles, Quantum 4, 337 (2020).
  10. G. Pereira Alves and J. Kaniewski, Physical Review A 106, 032219 (2022).
  11. See the Supplemental Material, which includes Refs. Goh et al. (2018); Baptista et al. .
Citations (5)

Summary

We haven't generated a summary for this paper yet.