Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiclass Classification of Policy Documents with Large Language Models (2310.08167v1)

Published 12 Oct 2023 in cs.CL

Abstract: Classifying policy documents into policy issue topics has been a long-time effort in political science and communication disciplines. Efforts to automate text classification processes for social science research purposes have so far achieved remarkable results, but there is still a large room for progress. In this work, we test the prediction performance of an alternative strategy, which requires human involvement much less than full manual coding. We use the GPT 3.5 and GPT 4 models of the OpenAI, which are pre-trained instruction-tuned LLMs (LLM), to classify congressional bills and congressional hearings into Comparative Agendas Project's 21 major policy issue topics. We propose three use-case scenarios and estimate overall accuracies ranging from %58-83 depending on scenario and GPT model employed. The three scenarios aims at minimal, moderate, and major human interference, respectively. Overall, our results point towards the insufficiency of complete reliance on GPT with minimal human intervention, an increasing accuracy along with the human effort exerted, and a surprisingly high accuracy achieved in the most humanly demanding use-case. However, the superior use-case achieved the %83 accuracy on the %65 of the data in which the two models agreed, suggesting that a similar approach to ours can be relatively easily implemented and allow for mostly automated coding of a majority of a given dataset. This could free up resources allowing manual human coding of the remaining %35 of the data to achieve an overall higher level of accuracy while reducing costs significantly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)

Summary

We haven't generated a summary for this paper yet.