Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counterfactual Explanations for Time Series Forecasting (2310.08137v1)

Published 12 Oct 2023 in cs.LG

Abstract: Among recent developments in time series forecasting methods, deep forecasting models have gained popularity as they can utilize hidden feature patterns in time series to improve forecasting performance. Nevertheless, the majority of current deep forecasting models are opaque, hence making it challenging to interpret the results. While counterfactual explanations have been extensively employed as a post-hoc approach for explaining classification models, their application to forecasting models still remains underexplored. In this paper, we formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF, that solves the problem by applying gradient-based perturbations to the original time series. ForecastCF guides the perturbations by applying constraints to the forecasted values to obtain desired prediction outcomes. We experimentally evaluate ForecastCF using four state-of-the-art deep model architectures and compare to two baselines. Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness. Overall, our findings suggest that ForecastCF can generate meaningful and relevant counterfactual explanations for various forecasting tasks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.