Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Rational Degree of Boolean Functions and Applications (2310.08004v1)

Published 12 Oct 2023 in cs.CC and quant-ph

Abstract: We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and monotone functions have rational degree at least $\sqrt{\mathrm{deg}(f)}$. We observe that both of these lower bounds are tight. In addition, we show that all read-once depth-$d$ Boolean formulae have rational degree at least $\Omega(\mathrm{deg}(f){1/d})$. Furthermore, we show that almost every Boolean function on $n$ variables has rational degree at least $n/2 - O(\sqrt{n})$. In contrast to total functions, we exhibit partial functions that witness unbounded separations between rational and approximate degree, in both directions. As a consequence, we show that for quantum computers, post-selection and bounded-error are incomparable resources in the black-box model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com