2000 character limit reached
One-loop Double Copy Relation in String Theory (2310.07755v2)
Published 11 Oct 2023 in hep-th, gr-qc, and math.NT
Abstract: We discuss relations between closed and open string amplitudes at one-loop. While at tree-level these relations are known as Kawai-Lewellen-Tye (KLT) and/or double copy relations, here we investigate how such relations are manifested at one-loop. While there exist examples of one-loop closed string amplitudes that can strikingly be written as sum over squares of one-loop open string amplitudes, generically the one-loop closed string amplitudes assume a form reminiscent from the one-loop doubly copy structure of gravitational amplitudes involving a loop momentum. This double copy structure represents the one-loop generalization of the KLT relations.
- Nucl. Phys. B 269, 1 (1986).
- Phys. Rev. D 78, 085011 (2008), arXiv:0805.3993.
- Phys. Rev. Lett. 105, 061602 (2010), arXiv:1004.0476.
- S. Stieberger, A Relation between One-Loop Amplitudes of Closed and Open Strings (One-Loop KLT Relation), (2022), arXiv:2212.06816.
- S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, (2009), arXiv:0907.2211.
- Phys. Rev. Lett. 103, 161602 (2009), arXiv:0907.1425.
- S. Hohenegger and S. Stieberger, Monodromy Relations in Higher-Loop String Amplitudes, Nucl. Phys. B 925, 63 (2017), arXiv:1702.04963.
- P. Tourkine and P. Vanhove, Higher-loop amplitude monodromy relations in string and gauge theory, Phys. Rev. Lett. 117, 211601 (2016), arXiv:1608.01665.
- JHEP 12, 087 (2019), arXiv:1910.08514.
- Nucl. Phys. B 546, 423 (1999), arXiv:hep-th/9811140.
- JHEP 01, 001 (2011), arXiv:1010.3933.
- N. Marcus, Unitarity and Regularized Divergences in String Amplitudes, Phys. Lett. B 219, 265 (1989).
- H. Yamamoto, One Loop Mass Shifts in O(32) Open Superstring Theory, Prog. Theor. Phys. 79, 189 (1988).
- S. Stieberger, Open & Closed vs. Pure Open String One-Loop Amplitudes, (2021), arXiv:2105.06888.
- G. S. Birman and K. Nomizu, Trigonometry in Lorentzian Geometry, The American Mathematical Monthly 91, 543 (1984).
- JHEP 02, 020 (2008), arXiv:0801.0322.
- JHEP 01, 155 (2019), arXiv:1803.00527.
- D. Zagier and F. Zerbini, Genus-zero and genus-one string amplitudes and special multiple zeta values, Commun. Num. Theor. Phys. 14, 413 (2020), arXiv:1906.12339.
- S. Ghazouani and L. Pirio, Moduli spaces of flat tori and elliptic hypergeometric functions, arXiv:1605.02356 (2016).
- Y. Goto, Intersection numbers of twisted homology and cohomology groups associated to the Riemann–Wirtinger integral, International Journal of Mathematics 34, 2350005 (2023).
- JHEP 07, 092 (2011), arXiv:1104.5224.
- Fortsch. Phys. 61, 812 (2013), arXiv:1304.7267.
- JHEP 10, 012 (2018), arXiv:1803.05452.
- JHEP 08, 193 (2023), arXiv:2301.07110.
- E. D’Hoker and D. H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys. 60, 917 (1988).
- Phys. Rev. Lett. 115, 121603 (2015), arXiv:1507.00321.
- JHEP 03, 114 (2016), arXiv:1511.06315.
- S. He and O. Schlotterer, New Relations for Gauge-Theory and Gravity Amplitudes at Loop Level, Phys. Rev. Lett. 118, 161601 (2017), arXiv:1612.00417.
- We have the relation Mn;1closed=τ2−d/2M^n;1closed|ℜ(τ)=0subscriptsuperscript𝑀𝑐𝑙𝑜𝑠𝑒𝑑𝑛1evaluated-atsuperscriptsubscript𝜏2𝑑2subscriptsuperscript^𝑀𝑐𝑙𝑜𝑠𝑒𝑑𝑛1𝜏0\left.M^{closed}_{n;1}=\tau_{2}^{-d/2}\widehat{M}^{closed}_{n;1}\right|_{\Re(% \tau)=0}italic_M start_POSTSUPERSCRIPT italic_c italic_l italic_o italic_s italic_e italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n ; 1 end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_d / 2 end_POSTSUPERSCRIPT over^ start_ARG italic_M end_ARG start_POSTSUPERSCRIPT italic_c italic_l italic_o italic_s italic_e italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n ; 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT roman_ℜ ( italic_τ ) = 0 end_POSTSUBSCRIPT.
- L. Eberhardt and S. Mizera, Unitarity cuts of the worldsheet, SciPost Phys. 14, 015 (2023), arXiv:2208.12233.
- (2016), arXiv:1605.03630.
- K. Baune and J. Broedel, A KLT-like construction for multi-Regge amplitudes, (2023), arXiv:2306.16257.