Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AG-CVG: Coverage Planning with a Mobile Recharging UGV and an Energy-Constrained UAV (2310.07621v2)

Published 11 Oct 2023 in cs.RO

Abstract: In this paper, we present an approach for coverage path planning for a team of an energy-constrained Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV). Both the UAV and the UGV have predefined areas that they have to cover. The goal is to perform complete coverage by both robots while minimizing the coverage time. The UGV can also serve as a mobile recharging station. The UAV and UGV need to occasionally rendezvous for recharging. We propose a heuristic method to address this NP-Hard planning problem. Our approach involves initially determining coverage paths without factoring in energy constraints. Subsequently, we cluster segments of these paths and employ graph matching to assign UAV clusters to UGV clusters for efficient recharging management. We perform numerical analysis on real-world coverage applications and show that compared with a greedy approach our method reduces rendezvous overhead on average by 11.33%. We demonstrate proof-of-concept with a team of a VOXL m500 drone and a Clearpath Jackal ground vehicle, providing a complete system from the offline algorithm to the field execution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. L. C. Santos, F. N. Santos, E. S. Pires, A. Valente, P. Costa, and S. Magalhães, “Path planning for ground robots in agriculture: A short review,” in 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).   IEEE, 2020, pp. 61–66.
  2. Y. Zhou, P. Li, Z. Ye, L. Yue, L. Gui, X. Jiang, X. Li, and Y.-h. Liu, “Building information modeling-based 3d reconstruction and coverage planning enabled automatic painting of interior walls using a novel painting robot in construction,” Journal of Field Robotics, vol. 39, no. 8, pp. 1178–1204, 2022.
  3. M. Dunbabin and L. Marques, “Robots for environmental monitoring: Significant advancements and applications,” IEEE Robotics & Automation Magazine, vol. 19, no. 1, pp. 24–39, 2012.
  4. N. Karapetyan, J. Moulton, and I. Rekleitis, “Meander-based river coverage by an autonomous surface vehicle,” in Field and Service Robotics: Results of the 12th International Conference.   Springer, 2021, pp. 353–364.
  5. Y. Sung, J. Das, and P. Tokekar, “Decision-theoretic approaches for robotic environmental monitoring–a survey,” arXiv preprint arXiv:2308.02698, 2023.
  6. P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning for a symbiotic uav and ugv system for precision agriculture,” IEEE transactions on robotics, vol. 32, no. 6, pp. 1498–1511, 2016.
  7. K. Yu, A. K. Budhiraja, S. Buebel, and P. Tokekar, “Algorithms and experiments on routing of unmanned aerial vehicles with mobile recharging stations,” Journal of Field Robotics, vol. 36, no. 3, pp. 602–616, 2019.
  8. K. Yu, J. M. O’Kane, and P. Tokekar, “Coverage of an environment using energy-constrained unmanned aerial vehicles,” in 2019 international conference on robotics and automation (ICRA).   IEEE, 2019, pp. 3259–3265.
  9. E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.
  10. N. Karapetyan, “Robot area coverage path planning in aquatic environments,” Ph.D. dissertation, University of South Carolina, 2021.
  11. E. U. Acar and H. Choset, “Sensor-based coverage of unknown environments: Incremental construction of morse decompositions,” The International Journal of Robotics Research, vol. 21, no. 4, pp. 345–366, 2002.
  12. V. Lumelsky, “Sensor-based terrian acquisition: a seed spreader strategy,” in IEEE/RSJ Int. Workshop on Intelligent Robots and System, 1989, pp. 62–67.
  13. A. Singh, M. A. Batalin, M. Stealey, V. Chen, M. H. Hansen, T. C. Harmon, G. S. Sukhatme, and W. J. Kaiser, “Mobile robot sensing for environmental applications,” in Field and service robotics.   Springer, 2008, pp. 125–135.
  14. G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic information gathering algorithms,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1271–1287, 2014.
  15. G. Shi, N. Karapetyan, A. B. Asghar, J.-P. Reddinger, J. Dotterweich, J. Humann, and P. Tokekar, “Risk-aware uav-ugv rendezvous with chance-constrained markov decision process,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 180–187.
  16. A. K. Lakshmanan, R. E. Mohan, B. Ramalingam, A. V. Le, P. Veerajagadeshwar, K. Tiwari, and M. Ilyas, “Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot,” Automation in Construction, vol. 112, p. 103078, 2020.
  17. H. Choset, “Coverage for robotics–a survey of recent results,” Annals of mathematics and artificial intelligence, vol. 31, pp. 113–126, 2001.
  18. G. P. Strimel and M. M. Veloso, “Coverage planning with finite resources,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 2950–2956.
  19. S. Agarwal and S. Akella, “Area coverage with multiple capacity-constrained robots,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3734–3741, 2022.
  20. L. Paull, S. Saeedi, M. Seto, and H. Li, “Sensor-driven online coverage planning for autonomous underwater vehicles,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 6, pp. 1827–1838, 2012.
  21. S. Manjanna, J. Hansen, A. Q. Li, I. Rekleitis, and G. Dudek, “Collaborative sampling using heterogeneous marine robots driven by visual cues,” in 2017 14th Conference on Computer and Robot Vision (CRV).   IEEE, 2017, pp. 87–94.
  22. M. Malencia, S. Manjanna, M. A. Hsieh, G. Pappas, and V. Kumar, “Adaptive sampling of latent phenomena using heterogeneous robot teams (aslap-hr),” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 8762–8769.
  23. B. Englot and F. Hover, “Sampling-based coverage path planning for inspection of complex structures,” in Proceedings of the International Conference on Automated Planning and Scheduling, vol. 22, 2012, pp. 29–37.
  24. H. Choset, “Coverage of known spaces: The boustrophedon cellular decomposition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.
  25. R. Bähnemann, N. Lawrance, J. J. Chung, M. Pantic, R. Siegwart, and J. Nieto, “Revisiting boustrophedon coverage path planning as a generalized traveling salesman problem,” in Field and Service Robotics: Results of the 12th International Conference.   Springer, 2021, pp. 277–290.
  26. A. Khan, I. Noreen, H. Ryu, N. L. Doh, and Z. Habib, “Online complete coverage path planning using two-way proximity search,” Intelligent Service Robotics, vol. 10, no. 3, pp. 229–240, 2017.
  27. A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage of a known arbitrary environment with applications to aerial operations,” Autonomous Robots, vol. 36, pp. 365–381, 2014.
  28. N. Karapetyan, K. Benson, C. McKinney, P. Taslakian, and I. Rekleitis, “Efficient multi-robot coverage of a known environment,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 1846–1852.
  29. N. Karapetyan, J. Moulton, J. S. Lewis, A. Q. Li, J. M. O’Kane, and I. Rekleitis, “Multi-robot dubins coverage with autonomous surface vehicles,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 2373–2379.
  30. C. Liu, J. Zhao, and N. Sun, “A review of collaborative air-ground robots research,” Journal of Intelligent & Robotic Systems, vol. 106, no. 3, p. 60, 2022.
  31. P. Maini, P. Tokekar, and P. Sujit, “Visibility-based persistent monitoring of piecewise linear features on a terrain using multiple aerial and ground robots,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 4, pp. 1692–1704, 2020.
  32. P. Maini, K. Yu, P. Sujit, and P. Tokekar, “Persistent monitoring with refueling on a terrain using a team of aerial and ground robots,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 8493–8498.
  33. A. B. Asghar, G. Shi, N. Karapetyan, J. Humann, J.-P. Reddinger, J. Dotterweich, and P. Tokekar, “Risk-aware resource allocation for multiple uavs-ugvs recharging rendezvous,” 2023.
  34. E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation algorithms for lawn mowing and milling,” Computational Geometry, vol. 17, no. 1-2, pp. 25–50, 2000.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Nare Karapetyan (22 papers)
  2. Ahmad Bilal Asghar (9 papers)
  3. Amisha Bhaskar (9 papers)
  4. Guangyao Shi (19 papers)
  5. Dinesh Manocha (366 papers)
  6. Pratap Tokekar (96 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets