Beyond the Hellings-Downs curve: Non-Einsteinian gravitational waves in pulsar timing array correlations (2310.07537v2)
Abstract: The recent astronomical milestone by the pulsar timing arrays (PTA) has revealed galactic-size gravitational waves (GW) in the form of a stochastic gravitational wave background (SGWB), correlating the radio pulses emitted by millisecond pulsars. This draws the outstanding questions toward the origin and the nature of the SGWB; the latter is synonymous to testing how quadrupolar the inter-pulsar spatial correlation is. In this paper, we tackle the nature of the SGWB by considering correlations beyond the Hellings-Downs (HD) curve of Einstein's general relativity. We put the HD and non-Einsteinian GW correlations under scrutiny with the NANOGrav and the CPTA data, and find that both data sets allow a graviton mass $m_{\rm g} \lesssim 1.04 \times 10{-22} \ {\rm eV}/c2$ and subluminal traveling waves. We discuss gravitational physics scenarios beyond general relativity that could host non-Einsteinian GW correlations in the SGWB and highlight the importance of the cosmic variance inherited from the stochasticity in interpreting PTA observation.
- G. Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
- D. J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
- J. Antoniadis et al., “The second data release from the European Pulsar Timing Array I. The dataset and timing analysis,” (2023), 10.1051/0004-6361/202346841, arXiv:2306.16224 [astro-ph.HE] .
- H. Xu et al., “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I,” Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,” (2021), arXiv:2111.03606 [gr-qc] .
- J. D. Romano and B. Allen, “Answers to frequently asked questions about the pulsar timing array Hellings and Downs correlation curve,” (2023), arXiv:2308.05847 [gr-qc] .
- S. L. Detweiler, “Pulsar timing measurements and the search for gravitational waves,” Astrophys. J. 234, 1100–1104 (1979).
- J. D. Romano and N. J. Cornish, “Detection methods for stochastic gravitational-wave backgrounds: a unified treatment,” Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
- S. Burke-Spolaor et al., ‘‘The Astrophysics of Nanohertz Gravitational Waves,” Astron. Astrophys. Rev. 27, 5 (2019), arXiv:1811.08826 [astro-ph.HE] .
- N. S. Pol et al. (NANOGrav), “Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection,” Astrophys. J. Lett. 911, L34 (2021), arXiv:2010.11950 [astro-ph.HE] .
- R. W. Hellings and G. W. Downs, “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis,” Astrophys. J. Lett. 265, L39–L42 (1983).
- F. A. Jenet and J. D. Romano, “Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves,” Am. J. Phys. 83, 635 (2015), arXiv:1412.1142 [gr-qc] .
- E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” (2001), arXiv:astro-ph/0108028 .
- G. Hobbs et al., “The international pulsar timing array project: using pulsars as a gravitational wave detector,” Class. Quant. Grav. 27, 084013 (2010), arXiv:0911.5206 [astro-ph.SR] .
- K. Lee, F. A. Jenet, R. H. Price, N. Wex, and M. Kramer, “Detecting massive gravitons using pulsar timing arrays,” Astrophys. J. 722, 1589–1597 (2010), arXiv:1008.2561 [astro-ph.HE] .
- K. J. Lee, N. Wex, M. Kramer, B. W. Stappers, C. G. Bassa, G. H. Janssen, R. Karuppusamy, and R. Smits, “Gravitational wave astronomy of single sources with a pulsar timing array,” Mon. Not. Roy. Astron. Soc. 414, 3251 (2011), arXiv:1103.0115 [astro-ph.HE] .
- L. Dai, M. Kamionkowski, and D. Jeong, “Total Angular Momentum Waves for Scalar, Vector, and Tensor Fields,” Phys. Rev. D 86, 125013 (2012), arXiv:1209.0761 [astro-ph.CO] .
- N. Yunes and X. Siemens, “Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays,” Living Rev. Rel. 16, 9 (2013), arXiv:1304.3473 [gr-qc] .
- S. J. Vigeland and M. Vallisneri, “Bayesian inference for pulsar timing models,” Mon. Not. Roy. Astron. Soc. 440, 1446–1457 (2014), arXiv:1310.2606 [astro-ph.IM] .
- A. N. Lommen, “Pulsar timing arrays: the promise of gravitational wave detection,” Rept. Prog. Phys. 78, 124901 (2015).
- S. Vagnozzi, “Implications of the NANOGrav results for inflation,” Mon. Not. Roy. Astron. Soc. 502, L11–L15 (2021), arXiv:2009.13432 [astro-ph.CO] .
- S. R. Taylor, “The Nanohertz Gravitational Wave Astronomer,” (2021), arXiv:2105.13270 [astro-ph.HE] .
- B. Allen, “Variance of the Hellings-Downs correlation,” Phys. Rev. D 107, 043018 (2023), arXiv:2205.05637 [gr-qc] .
- R. C. Bernardo and K.-W. Ng, “Pulsar and cosmic variances of pulsar timing-array correlation measurements of the stochastic gravitational wave background,” JCAP 11, 046 (2022), arXiv:2209.14834 [gr-qc] .
- R. C. Bernardo and K.-W. Ng, “Hunting the stochastic gravitational wave background in pulsar timing array cross correlations through theoretical uncertainty,” JCAP (to appear) (2023a), arXiv:2304.07040 [gr-qc] .
- B. Allen and J. D. Romano, “The Hellings and Downs correlation of an arbitrary set of pulsars,” (2022), arXiv:2208.07230 [gr-qc] .
- B. Allen et al., “The International Pulsar Timing Array checklist for the detection of nanohertz gravitational waves,” (2023), arXiv:2304.04767 [astro-ph.IM] .
- P. D. Lasky et al., “Gravitational-wave cosmology across 29 decades in frequency,” Phys. Rev. X 6, 011035 (2016), arXiv:1511.05994 [astro-ph.CO] .
- M. Bailes et al., “Gravitational-wave physics and astronomy in the 2020s and 2030s,” Nature Reviews Physics 3, 344–366 (2021).
- G. Lambiase, L. Mastrototaro, and L. Visinelli, “Astrophysical neutrino oscillations after pulsar timing array analyses,” (2023), arXiv:2306.16977 [astro-ph.HE] .
- R. M. Shannon et al., “Gravitational waves from binary supermassive black holes missing in pulsar observations,” Science 349, 1522–1525 (2015), arXiv:1509.07320 [astro-ph.CO] .
- C. M. F. Mingarelli et al., “The Local Nanohertz Gravitational-Wave Landscape From Supermassive Black Hole Binaries,” Nature Astron. 1, 886–892 (2017), arXiv:1708.03491 [astro-ph.GA] .
- T. Liu and S. J. Vigeland, “Multi-messenger Approaches to Supermassive Black Hole Binary Detection and Parameter Estimation: Implications for Nanohertz Gravitational Wave Searches with Pulsar Timing Arrays,” Astrophys. J. 921, 178 (2021), arXiv:2105.08087 [astro-ph.HE] .
- Z. Arzoumanian et al. (NANOGrav), “The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background,” Astrophys. J. Lett. 923, L22 (2021a), arXiv:2109.14706 [gr-qc] .
- G. Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. Lett. 951, L50 (2023b), arXiv:2306.16222 [astro-ph.HE] .
- J. Ellis, M. Fairbairn, G. Hütsi, J. Raidal, J. Urrutia, V. Vaskonen, and H. Veermäe, “Gravitational Waves from SMBH Binaries in Light of the NANOGrav 15-Year Data,” (2023a), arXiv:2306.17021 [astro-ph.CO] .
- Z.-C. Chen, C. Yuan, and Q.-G. Huang, “Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset,” Phys. Rev. Lett. 124, 251101 (2020), arXiv:1910.12239 [astro-ph.CO] .
- Z. Arzoumanian et al. (NANOGrav), “Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset,” Phys. Rev. Lett. 127, 251302 (2021b), arXiv:2104.13930 [astro-ph.CO] .
- X. Xue et al., “Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array,” Phys. Rev. Lett. 127, 251303 (2021), arXiv:2110.03096 [astro-ph.CO] .
- C. J. Moore and A. Vecchio, “Ultra-low-frequency gravitational waves from cosmological and astrophysical processes,” Nature Astron. 5, 1268–1274 (2021), arXiv:2104.15130 [astro-ph.CO] .
- A. Afzal et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Search for Signals from New Physics,” Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
- S. Vagnozzi, “Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments,” JHEAp 39, 81–98 (2023), arXiv:2306.16912 [astro-ph.CO] .
- G. Franciolini, D. Racco, and F. Rompineve, “Footprints of the QCD Crossover on Cosmological Gravitational Waves at Pulsar Timing Arrays,” (2023), arXiv:2306.17136 [astro-ph.CO] .
- Y. Bai, T.-K. Chen, and M. Korwar, “QCD-Collapsed Domain Walls: QCD Phase Transition and Gravitational Wave Spectroscopy,” (2023), arXiv:2306.17160 [hep-ph] .
- E. Megias, G. Nardini, and M. Quiros, “Pulsar Timing Array Stochastic Background from light Kaluza-Klein resonances,” (2023), arXiv:2306.17071 [hep-ph] .
- J.-Q. Jiang, Y. Cai, G. Ye, and Y.-S. Piao, “Broken blue-tilted inflationary gravitational waves: a joint analysis of NANOGrav 15-year and BICEP/Keck 2018 data,” (2023), arXiv:2307.15547 [astro-ph.CO] .
- Z. Zhang, C. Cai, Y.-H. Su, S. Wang, Z.-H. Yu, and H.-H. Zhang, “Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations,” (2023), arXiv:2307.11495 [hep-ph] .
- D. G. Figueroa, M. Pieroni, A. Ricciardone, and P. Simakachorn, “Cosmological Background Interpretation of Pulsar Timing Array Data,” (2023), arXiv:2307.02399 [astro-ph.CO] .
- L. Bian, S. Ge, J. Shu, B. Wang, X.-Y. Yang, and J. Zong, “Gravitational wave sources for Pulsar Timing Arrays,” (2023), arXiv:2307.02376 [astro-ph.HE] .
- X. Niu and M. H. Rahat, “NANOGrav signal from axion inflation,” (2023), arXiv:2307.01192 [hep-ph] .
- P. F. Depta, K. Schmidt-Hoberg, and C. Tasillo, “Do pulsar timing arrays observe merging primordial black holes?” (2023), arXiv:2306.17836 [astro-ph.CO] .
- K. T. Abe and Y. Tada, “Translating nano-Hertz gravitational wave background into primordial perturbations taking account of the cosmological QCD phase transition,” (2023), arXiv:2307.01653 [astro-ph.CO] .
- G. Servant and P. Simakachorn, “Constraining Post-Inflationary Axions with Pulsar Timing Arrays,” (2023), arXiv:2307.03121 [hep-ph] .
- J. Ellis, M. Fairbairn, G. Franciolini, G. Hütsi, A. Iovino, M. Lewicki, M. Raidal, J. Urrutia, V. Vaskonen, and H. Veermäe, “What is the source of the PTA GW signal?” (2023b), arXiv:2308.08546 [astro-ph.CO] .
- N. Bhaumik, R. K. Jain, and M. Lewicki, “Ultra-low mass PBHs in the early universe can explain the PTA signal,” (2023), arXiv:2308.07912 [astro-ph.CO] .
- W. Ahmed, T. A. Chowdhury, S. Nasri, and S. Saad, “Gravitational waves from metastable cosmic strings in Pati-Salam model in light of new pulsar timing array data,” (2023), arXiv:2308.13248 [hep-ph] .
- S. J. Chamberlin and X. Siemens, “Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays,” Phys. Rev. D 85, 082001 (2012), arXiv:1111.5661 [astro-ph.HE] .
- W. Qin, K. K. Boddy, M. Kamionkowski, and L. Dai, “Pulsar-timing arrays, astrometry, and gravitational waves,” Phys. Rev. D 99, 063002 (2019), arXiv:1810.02369 [astro-ph.CO] .
- W. Qin, K. K. Boddy, and M. Kamionkowski, “Subluminal stochastic gravitational waves in pulsar-timing arrays and astrometry,” Phys. Rev. D 103, 024045 (2021), arXiv:2007.11009 [gr-qc] .
- K.-W. Ng, “Redshift-space fluctuations in stochastic gravitational wave background,” Phys. Rev. D 106, 043505 (2022), arXiv:2106.12843 [astro-ph.CO] .
- Z.-C. Chen, C. Yuan, and Q.-G. Huang, “Non-tensorial gravitational wave background in NANOGrav 12.5-year data set,” Sci. China Phys. Mech. Astron. 64, 120412 (2021), arXiv:2101.06869 [astro-ph.CO] .
- G.-C. Liu and K.-W. Ng, “Timing-residual power spectrum of a polarized stochastic gravitational-wave background in pulsar-timing-array observation,” Phys. Rev. D 106, 064004 (2022), arXiv:2201.06767 [gr-qc] .
- Y. Hu, P.-P. Wang, Y.-J. Tan, and C.-G. Shao, “Full analytic expression of overlap reduction function for gravitational wave background with pulsar timing arrays,” (2022), arXiv:2205.09272 [gr-qc] .
- R. C. Bernardo and K.-W. Ng, “Stochastic gravitational wave background phenomenology in a pulsar timing array,” Phys. Rev. D 107, 044007 (2023b), arXiv:2208.12538 [gr-qc] .
- Q. Liang and M. Trodden, “Detecting the stochastic gravitational wave background from massive gravity with pulsar timing arrays,” Phys. Rev. D 104, 084052 (2021), arXiv:2108.05344 [astro-ph.CO] .
- R. C. Bernardo and K.-W. Ng, “Looking out for the Galileon in the nanohertz gravitational wave sky,” Phys. Lett. B 841, 137939 (2023c), arXiv:2206.01056 [astro-ph.CO] .
- R. C. Bernardo and K.-W. Ng, “Constraining gravitational wave propagation using pulsar timing array correlations,” Phys. Rev. D 107, L101502 (2023d), arXiv:2302.11796 [gr-qc] .
- Y.-M. Wu, Z.-C. Chen, and Q.-G. Huang, “Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset,” Phys. Rev. D 107, 042003 (2023), arXiv:2302.00229 [gr-qc] .
- Q. Liang, M.-X. Lin, and M. Trodden, “A Test of Gravity with Pulsar Timing Arrays,” (2023), arXiv:2304.02640 [astro-ph.CO] .
- R. C. Bernardo and K.-W. Ng, “Testing gravity with cosmic variance-limited pulsar timing array correlations,” (2023e), arXiv:2306.13593 [gr-qc] .
- K. J. Lee, “Pulsar Timing Arrays and Gravity Tests in the Radiative Regime,” Class. Quant. Grav. 30, 224016 (2013), arXiv:1404.2090 [astro-ph.CO] .
- D. P. Mihaylov, C. J. Moore, J. Gair, A. Lasenby, and G. Gilmore, “Astrometric effects of gravitational wave backgrounds with nonluminal propagation speeds,” Phys. Rev. D 101, 024038 (2020), arXiv:1911.10356 [gr-qc] .
- T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified Gravity and Cosmology,” Phys. Rept. 513, 1–189 (2012), arXiv:1106.2476 [astro-ph.CO] .
- A. Joyce, B. Jain, J. Khoury, and M. Trodden, “Beyond the Cosmological Standard Model,” Phys. Rept. 568, 1–98 (2015), arXiv:1407.0059 [astro-ph.CO] .
- S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution,” Phys. Rept. 692, 1–104 (2017), arXiv:1705.11098 [gr-qc] .
- N. J. Cornish, L. O’Beirne, S. R. Taylor, and N. Yunes, “Constraining alternative theories of gravity using pulsar timing arrays,” Phys. Rev. Lett. 120, 181101 (2018), arXiv:1712.07132 [gr-qc] .
- R. Kase and S. Tsujikawa, “Dark energy in Horndeski theories after GW170817: A review,” Int. J. Mod. Phys. D 28, 1942005 (2019), arXiv:1809.08735 [gr-qc] .
- P. G. Ferreira, “Cosmological Tests of Gravity,” Ann. Rev. Astron. Astrophys. 57, 335–374 (2019), arXiv:1902.10503 [astro-ph.CO] .
- L. O’Beirne, N. J. Cornish, S. J. Vigeland, and S. R. Taylor, “Constraining alternative polarization states of gravitational waves from individual black hole binaries using pulsar timing arrays,” Phys. Rev. D 99, 124039 (2019), arXiv:1904.02744 [gr-qc] .
- G. Tasinato, “Kinematic anisotropies and pulsar timing arrays,” (2023), arXiv:2309.00403 [gr-qc] .
- L. Hui, A. Nicolis, and C. Stubbs, “Equivalence Principle Implications of Modified Gravity Models,” Phys. Rev. D 80, 104002 (2009), arXiv:0905.2966 [astro-ph.CO] .
- J. Wang, L. Hui, and J. Khoury, “No-Go Theorems for Generalized Chameleon Field Theories,” Phys. Rev. Lett. 109, 241301 (2012), arXiv:1208.4612 [astro-ph.CO] .
- C. de Rham, “Galileons in the Sky,” Comptes Rendus Physique 13, 666–681 (2012), arXiv:1204.5492 [astro-ph.CO] .
- P. Brax, C. Burrage, and A.-C. Davis, “Laboratory Tests of the Galileon,” JCAP 09, 020 (2011), arXiv:1106.1573 [hep-ph] .
- A. Ali, R. Gannouji, M. W. Hossain, and M. Sami, “Light mass galileons: Cosmological dynamics, mass screening and observational constraints,” Phys. Lett. B 718, 5–14 (2012), arXiv:1207.3959 [gr-qc] .
- M. Andrews, Y.-Z. Chu, and M. Trodden, “Galileon forces in the Solar System,” Phys. Rev. D 88, 084028 (2013), arXiv:1305.2194 [astro-ph.CO] .
- C. de Rham and S. Melville, “Gravitational Rainbows: LIGO and Dark Energy at its Cutoff,” Phys. Rev. Lett. 121, 221101 (2018), arXiv:1806.09417 [hep-th] .
- J. Nay, K. K. Boddy, T. L. Smith, and C. M. F. Mingarelli, “Harmonic Analysis for Pulsar Timing Arrays,” (2023), arXiv:2306.06168 [gr-qc] .
- S. Wang and Z.-C. Zhao, “Unveiling the Graviton Mass Bounds through Analysis of 2023 Pulsar Timing Array Datasets,” (2023), arXiv:2307.04680 [astro-ph.HE] .
- J. E. Kim, B. Kyae, and H. M. Lee, “Effective Gauss-Bonnet interaction in Randall-Sundrum compactification,” Phys. Rev. D 62, 045013 (2000), arXiv:hep-ph/9912344 .
- J. E. Kim and H. M. Lee, “Gravity in the Einstein-Gauss-Bonnet theory with the Randall-Sundrum background,” Nucl. Phys. B 602, 346–366 (2001), [Erratum: Nucl.Phys.B 619, 763–764 (2001)], arXiv:hep-th/0010093 .
- L. Capuano, L. Santoni, and E. Barausse, “Black hole hairs in scalar-tensor gravity (and lack thereof),” (2023), arXiv:2304.12750 [gr-qc] .
- K. Aoki and S. Tsujikawa, “Coupled vector Gauss-Bonnet theories and hairy black holes,” Phys. Lett. B 843, 138022 (2023), arXiv:2303.13717 [gr-qc] .
- M. Isi and A. J. Weinstein, “Probing gravitational wave polarizations with signals from compact binary coalescences,” (2017), arXiv:1710.03794 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Phys. Rev. Lett. 119, 141101 (2017), arXiv:1709.09660 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), “Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background,” Phys. Rev. Lett. 120, 201102 (2018), arXiv:1802.10194 [gr-qc] .
- J. H. Taylor, L. A. Fowler, and P. M. McCulloch, “Measurements of general relativistic effects in the binary pulsar PSR 1913+16,” Nature 277, 437–440 (1979).
- W. van Straten, M. Bailes, M. C. Britton, S. R. Kulkarni, S. B. Anderson, R. N. Manchester, and J. Sarkissian, “A Test of General Relativity from the three-dimensional orbital geometry of a binary pulsar,” Nature 412, 158–160 (2001), arXiv:astro-ph/0108254 .
- I. Ciufolini and E. C. Pavlis, “A confirmation of the general relativistic prediction of the Lense-Thirring effect,” Nature 431, 958–960 (2004).
- M. J. Valtonen et al., “A massive binary black-hole system in OJ 287 and a test of general relativity,” Nature 452, 851–853 (2008), arXiv:0809.1280 [astro-ph] .
- R. Reyes et al., “Confirmation of general relativity on large scales from weak lensing and galaxy velocities,” Nature 464, 256–258 (2010), arXiv:1003.2185 [astro-ph.CO] .
- M. Coleman Miller and N. Yunes, “The new frontier of gravitational waves,” Nature 568, 469–476 (2019).
- R. C. Bernardo and K.-W. Ng, “PTAfast: PTA correlations from stochastic gravitational wave background,” Astrophysics Source Code Library, record ascl:2211.001 (2022).
- K.-W. Ng and G.-C. Liu, “Correlation functions of CMB anisotropy and polarization,” Int. J. Mod. Phys. D 8, 61–83 (1999), arXiv:astro-ph/9710012 .
- W. J. Handley, M. P. Hobson, and A. N. Lasenby, “PolyChord: nested sampling for cosmology,” Mon. Not. Roy. Astron. Soc. 450, L61–L65 (2015), arXiv:1502.01856 [astro-ph.CO] .
- W. J. Handley, M. P. Hobson, and A. N. Lasenby, “POLYCHORD: next-generation nested sampling,” Mon. Not. Roy. Astron. Soc. 453, 4384–4398 (2015), arXiv:1506.00171 [astro-ph.IM] .
- J. Torrado and A. Lewis, “Cobaya: Code for Bayesian Analysis of hierarchical physical models,” JCAP 05, 057 (2021), arXiv:2005.05290 [astro-ph.IM] .
- A. Lewis, “GetDist: a Python package for analysing Monte Carlo samples,” (2019), arXiv:1910.13970 [astro-ph.IM] .