Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI/ML-based Load Prediction in IEEE 802.11 Enterprise Networks (2310.07467v1)

Published 11 Oct 2023 in cs.NI, cs.AI, and eess.SP

Abstract: Enterprise Wi-Fi networks can greatly benefit from Artificial Intelligence and Machine Learning (AI/ML) thanks to their well-developed management and operation capabilities. At the same time, AI/ML-based traffic/load prediction is one of the most appealing data-driven solutions to improve the Wi-Fi experience, either through the enablement of autonomous operation or by boosting troubleshooting with forecasted network utilization. In this paper, we study the suitability and feasibility of adopting AI/ML-based load prediction in practical enterprise Wi-Fi networks. While leveraging AI/ML solutions can potentially contribute to optimizing Wi-Fi networks in terms of energy efficiency, performance, and reliability, their effective adoption is constrained to aspects like data availability and quality, computational capabilities, and energy consumption. Our results show that hardware-constrained AI/ML models can potentially predict network load with less than 20% average error and 3% 85th-percentile error, which constitutes a suitable input for proactively driving Wi-Fi network optimization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. L. Galati Giordano, G. Geraci, M. Carrascosa, and B. Bellalta, “What will Wi-Fi 8 be? A primer on IEEE 802.11 bn ultra high reliability,” arXiv e-prints, pp. arXiv–2303, 2023.
  2. B. M. Khorsandi, M. Hoffmann, M. Uusitalo, et al., “Hexa-X deliverable D1. 3: Targets and requirements for 6G-initial E2E architecture,” Online: http://hexax. eu/deliverables, 2022.
  3. S. Troia, R. Alvizu, Y. Zhou, G. Maier, and A. Pattavina, “Deep learning-based traffic prediction for network optimization,” in 2018 20th International Conference on Transparent Optical Networks (ICTON), pp. 1–4, IEEE, 2018.
  4. IEEE 802.11 Working Group (WG), “11-22/0597r3: 802.11 May 2022 WG Motions,” 2022.
  5. Wi-Fi Alliance, “ Wi-Fi CERTIFIED Data Elements™ (Version 2.1),” 2022.
  6. D. A. Tedjopurnomo, Z. Bao, B. Zheng, F. M. Choudhury, and A. K. Qin, “A survey on modern deep neural network for traffic prediction: Trends, methods and challenges,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 4, pp. 1544–1561, 2020.
  7. M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network traffic monitoring and analysis (NTMA): A survey,” Computer Communications, vol. 170, pp. 19–41, 2021.
  8. W. Chen, F. Lyu, F. Wu, P. Yang, and J. Ren, “Flag: Flexible, accurate, and long-time user load prediction in large-scale WiFi system using deep RNN,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16510–16521, 2021.
  9. Springer Science & Business Media, 2012.
  10. C. A. Hernández Suarez, O. J. Salcedo Parra, and A. Escobar Díaz, “An ARIMA model for forecasting Wi-Fi data network traffic values,” Ingeniería e Investigación, vol. 29, no. 2, pp. 65–69, 2009.
  11. Y. Jin, N. Duffield, A. Gerber, P. Haffner, W.-L. Hsu, G. Jacobson, S. Sen, S. Venkataraman, and Z.-L. Zhang, “Characterizing data usage patterns in a large cellular network,” in Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges, and future design, pp. 7–12, 2012.
  12. F. Wilhelmi, S. Barrachina-Muñoz, B. Bellalta, C. Cano, A. Jonsson, and V. Ram, “A flexible machine-learning-aware architecture for future WLANs,” IEEE Communications Magazine, vol. 58, no. 3, pp. 25–31, 2020.
  13. S. Szott, K. Kosek-Szott, P. Gawłowicz, J. T. Gómez, B. Bellalta, A. Zubow, and F. Dressler, “Wi-Fi meets ML: A survey on improving IEEE 802.11 performance with machine learning,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1843–1893, 2022.
  14. H. Feng, Y. Shu, S. Wang, and M. Ma, “SVM-based models for predicting WLAN traffic,” in 2006 IEEE international conference on communications, vol. 2, pp. 597–602, IEEE, 2006.
  15. A. Thapaliya, J. Schnebly, and S. Sengupta, “Predicting congestion level in wireless networks using an integrated approach of supervised and unsupervised learning,” in 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 977–982, IEEE, 2018.
  16. M. A. Khan, R. Hamila, N. A. Al-Emadi, S. Kiranyaz, and M. Gabbouj, “Real-time throughput prediction for cognitive Wi-Fi networks,” Journal of Network and Computer Applications, vol. 150, p. 102499, 2020.
  17. W. Jiang, “Cellular traffic prediction with machine learning: A survey,” Expert Systems with Applications, vol. 201, p. 117163, 2022.
  18. H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from raw data using lstm networks,” in 2018 IEEE 29th annual international symposium on personal, indoor and mobile radio communications (PIMRC), pp. 1827–1832, IEEE, 2018.
  19. S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” in 2017 international conference on engineering and technology (ICET), pp. 1–6, Ieee, 2017.
  20. D. Zhang, L. Liu, C. Xie, B. Yang, and Q. Liu, “Citywide cellular traffic prediction based on a hybrid spatiotemporal network,” Algorithms, vol. 13, no. 1, p. 20, 2020.
  21. J. Feng, X. Chen, R. Gao, M. Zeng, and Y. Li, “Deeptp: An end-to-end neural network for mobile cellular traffic prediction,” IEEE Network, vol. 32, no. 6, pp. 108–115, 2018.
  22. V. Perifanis, N. Pavlidis, S. F. Yilmaz, F. Wilhelmi, E. Guerra, M. Miozzo, P. S. Efraimidis, P. Dini, and R.-A. Koutsiamanis, “Towards Energy-Aware Federated Traffic Prediction for Cellular Networks,” in 1st International Symposium on Federated Learning Technologies and Applications (FLTA), 2023.
  23. S. A. Budennyy, V. D. Lazarev, N. N. Zakharenko, A. N. Korovin, O. Plosskaya, D. V. Dimitrov, V. Akhripkin, I. Pavlov, I. V. Oseledets, I. S. Barsola, et al., “Eco2ai: carbon emissions tracking of machine learning models as the first step towards sustainable AI,” in Doklady Mathematics, vol. 106, pp. S118–S128, Springer, 2022.
  24. Y. Nahshan, B. Chmiel, C. Baskin, E. Zheltonozhskii, R. Banner, A. M. Bronstein, and A. Mendelson, “Loss aware post-training quantization,” Machine Learning, vol. 110, no. 11-12, pp. 3245–3262, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.