Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CrashTranslator: Automatically Reproducing Mobile Application Crashes Directly from Stack Trace (2310.07128v1)

Published 11 Oct 2023 in cs.SE

Abstract: Crash reports are vital for software maintenance since they allow the developers to be informed of the problems encountered in the mobile application. Before fixing, developers need to reproduce the crash, which is an extremely time-consuming and tedious task. Existing studies conducted the automatic crash reproduction with the natural language described reproducing steps. Yet we find a non-neglectable portion of crash reports only contain the stack trace when the crash occurs. Such stack-trace-only crashes merely reveal the last GUI page when the crash occurs, and lack step-by-step guidance. Developers tend to spend more effort in understanding the problem and reproducing the crash, and existing techniques cannot work on this, thus calling for a greater need for automatic support. This paper proposes an approach named CrashTranslator to automatically reproduce mobile application crashes directly from the stack trace. It accomplishes this by leveraging a pre-trained LLM to predict the exploration steps for triggering the crash, and designing a reinforcement learning based technique to mitigate the inaccurate prediction and guide the search holistically. We evaluate CrashTranslator on 75 crash reports involving 58 popular Android apps, and it successfully reproduces 61.3% of the crashes, outperforming the state-of-the-art baselines by 109% to 206%. Besides, the average reproducing time is 68.7 seconds, outperforming the baselines by 302% to 1611%. We also evaluate the usefulness of CrashTranslator with promising results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.