Ion Trap with In-Vacuum High Numerical Aperture Imaging for a Dual-Species Modular Quantum Computer (2310.07058v2)
Abstract: Photonic interconnects between quantum systems will play a central role in both scalable quantum computing and quantum networking. Entanglement of remote qubits via photons has been demonstrated in many platforms; however, improving the rate of entanglement generation will be instrumental for integrating photonic links into modular quantum computers. We present an ion trap system that has the highest reported free-space photon collection efficiency for quantum networking. We use a pair of in-vacuum aspheric lenses, each with a numerical aperture of 0.8, to couple 10% of the 493 nm photons emitted from a ${138}$Ba$+$ ion into single-mode fibers. We also demonstrate that proximal effects of the lenses on the ion position and motion can be mitigated.
- P. Wang, C.-Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, and K. Kim, “Single ion qubit with estimated coherence time exceeding one hour,” Nature Communications 12, 233 (2021).
- F. A. An, A. Ransford, A. Schaffer, L. R. Sletten, J. Gaebler, J. Hostetter, and G. Vittorini, “High fidelity state preparation and measurement of ion hyperfine qubits with I>12𝐼12{I}>\frac{1}{2}italic_I > divide start_ARG 1 end_ARG start_ARG 2 end_ARG,” Physical Review Letters 129, 130501 (2022).
- T. Harty, D. Allcock, C. Ballance, L. Guidoni, H. Janacek, N. Linke, D. Stacey, and D. Lucas, “High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit,” Physical Review Letters 113, 220501 (2014).
- C. Ballance, T. Harty, N. Linke, M. Sepiol, and D. Lucas, “High-fidelity quantum logic gates using trapped-ion hyperfine qubits,” Physical Review Letters 117, 060504 (2016).
- R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A. Kwiatkowski, S. Glancy, E. Knill, D. J. Wineland, D. Leibfried, A. C. Wilson, D. T. C. Allcock, and D. H. Slichter, “High-fidelity laser-free universal control of trapped ion qubits,” Nature 597, 209–213 (2021).
- C. R. Clark, H. N. Tinkey, B. C. Sawyer, A. M. Meier, K. A. Burkhardt, C. M. Seck, C. M. Shappert, N. D. Guise, C. E. Volin, S. D. Fallek, H. T. Hayden, W. G. Rellergert, and K. R. Brown, “High-fidelity Bell-state preparation with 4040{}^{40}start_FLOATSUPERSCRIPT 40 end_FLOATSUPERSCRIPTCa+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT optical qubits,” Phys. Rev. Lett. 127, 130505 (2021).
- C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits,” Quantum 5, 433 (2021).
- Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T. Chong, B. DeMarco, D. Englund, E. Farhi, B. Fefferman, A. V. Gorshkov, A. Houck, J. Kim, S. Kimmel, M. Lange, S. Lloyd, M. D. Lukin, D. Maslov, P. Maunz, C. Monroe, J. Preskill, M. Roetteler, M. J. Savage, and J. Thompson, “Quantum computer systems for scientific discovery,” PRX Quantum 2, 017001 (2021).
- C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” Science 339, 1164–1169 (2013).
- M. Cetina, L. Egan, C. Noel, M. Goldman, D. Biswas, A. Risinger, D. Zhu, and C. Monroe, “Control of transverse motion for quantum gates on individually addressed atomic qubits,” PRX Quantum 3, 010334 (2022).
- D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002).
- J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, “Demonstration of the trapped-ion quantum CCD computer architecture,” Nature 592, 209–213 (2021).
- S. A. Moses et al., “A race-track trapped-ion quantum processor,” Phys. Rev. X 13, 041052 (2023).
- C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” Phys. Rev. A 89, 022317 (2014).
- I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe, “Multispecies trapped-ion node for quantum networking,” Physical Review Letters 118, 250502 (2017).
- L. Feng, Y.-Y. Huang, Y.-K. Wu, W.-X. Guo, J.-Y. Ma, H.-X. Yang, L. Zhang, Y. Wang, C.-X. Huang, C. Zhang, L. Yao, B.-X. Qi, Y.-F. Pu, Z.-C. Zhou, and L.-M. Duan, “Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species,” Nature Communications 15, 204 (2024).
- L. Stephenson, D. Nadlinger, B. Nichol, S. An, P. Drmota, T. Ballance, K. Thirumalai, J. Goodwin, D. Lucas, and C. Ballance, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” Physical Review Letters 124, 110501 (2020).
- K. Wright et al., “Benchmarking an 11-qubit quantum computer,” Nature Communications 10, 5464 (2019).
- J. Schupp, V. Krcmarsky, V. Krutyanskiy, M. Meraner, T. Northup, and B. Lanyon, “Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency,” PRX Quantum 2, 020331 (2021).
- M. Teller, D. A. Fioretto, P. C. Holz, P. Schindler, V. Messerer, K. Schüppert, Y. Zou, R. Blatt, J. Chiaverini, J. Sage, and T. E. Northup, “Heating of a trapped ion induced by dielectric materials,” Physical Review Letters 126, 230505 (2021).
- R. Maiwald, A. Golla, M. Fischer, M. Bader, S. Heugel, B. Chalopin, M. Sondermann, and G. Leuchs, “Collecting more than half the fluorescence photons from a single ion,” Phys. Rev. A 86, 043431 (2012).
- C.-K. Chou, C. Auchter, J. Lilieholm, K. Smith, and B. Blinov, “Note: Single ion imaging and fluorescence collection with a parabolic mirror trap,” Review of Scientific Instruments 88, 086101 (2017).
- G. Araneda, G. Cerchiari, D. B. Higginbottom, P. C. Holz, K. Lakhmanskiy, P. Obšil, Y. Colombe, and R. Blatt, “The Panopticon device: An integrated Paul-trap–hemispherical mirror system for quantum optics,” Review of Scientific Instruments 91, 113201 (2020).
- S. Gerber, D. Rotter, M. Hennrich, R. Blatt, F. Rohde, C. Schuck, M. Almendros, R. Gehr, F. Dubin, and J. Eschner, “Quantum interference from remotely trapped ions,” New Journal of Physics 11, 013032 (2009).
- J. Béguelin, W. Noell, T. Scharf, and R. Voelkel, “Tolerancing the surface form of aspheric microlenses manufactured by wafer-level optics techniques,” Appl. Opt. 59, 3910–3919 (2020).
- Ohara Corporation, “Ohara Glass Catalog,” Available online at http://www.oharacorp.com/catalog.html.
- D. Reens, M. Collins, J. Ciampi, D. Kharas, B. F. Aull, K. Donlon, C. D. Bruzewicz, B. Felton, J. Stuart, R. J. Niffenegger, P. Rich, D. Braje, K. K. Ryu, J. Chiaverini, and R. McConnell, “High-fidelity ion state detection using trap-integrated avalanche photodiodes,” Physical Review Letters 129, 100502 (2022).
- C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic qubit,” Optics Express 27, 28143–28149 (2019).
- L. Laughlin and J. M. Sasian, “Source modeling and calculation of mask illumination during extreme-ultraviolet lithography condenser design,” in International Optical Design Conference 2002, Vol. 4832 (SPIE, 2002) pp. 283–292.
- C. Robens, S. Brakhane, W. Alt, F. Kleißler, D. Meschede, G. Moon, G. Ramola, and A. Alberti, “High numerical aperture (NA = 0.92) objective lens for imaging and addressing of cold atoms,” Optics Letters 42, 1043–1046 (2017).
- Corning, “Macor: Machinable glass ceramic for industrial applications,” (2012), available online at https://www.corning.com/worldwide/en/products/advanced-optics/product-materials/specialty-glass-and-glass-ceramics/glass-ceramics/macor.html.
- P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light: Science & Applications 2, e98–e98 (2013).
- A. L. Carter, Design and construction of a three-node quantum network, Ph.D. thesis, University of Maryland, College Park (2021).
- J. D. Wong-Campos, K. G. Johnson, B. Neyenhuis, J. Mizrahi, and C. Monroe, “High-resolution adaptive imaging of a single atom,” Nature Photonics 10, 606–610 (2016).
- P. L. W. Maunz, “High optical access trap 2.0.” Tech. Rep. SAND-2016-0796R (Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), 2016).
- K. Sosnova, Mixed-species ion chains for quantum networks, Ph.D. thesis, University of Maryland, College Park (2020).
- X. Zhao, V. L. Ryjkov, and H. A. Schuessler, “Parametric excitations of trapped ions in a linear rf ion trap,” Physical Review A 66, 063414 (2002).
- D. Wineland, C. Monroe, W. Itano, D. Leibfried, B. King, and D. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” Journal of Research of the National Institute of Standards and Technology 103, 259 (1998).
- M. R. Dietrich, N. Kurz, T. Noel, G. Shu, and B. B. Blinov, “Hyperfine and optical barium ion qubits,” Phys. Rev. A 81, 052328 (2010).
- D. Yum, D. D. Munshi, T. Dutta, and M. Mukherjee, “Optical barium ion qubit,” J. Opt. Soc. Am. B 34, 1632–1636 (2017).
- J. Keller, H. L. Partner, T. Burgermeister, and T. E. Mehlstäubler, “Precise determination of micromotion for trapped-ion optical clocks,” Journal of Applied Physics 118 (2015), 10.1063/1.4930037.
- H. Häffner, C. Roos, and R. Blatt, “Quantum computing with trapped ions,” Physics Reports 469, 155–203 (2008).
- M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt, “Ion-trap measurements of electric-field noise near surfaces,” Reviews of Modern Physics 87 (2015), 10.1103/RevModPhys.87.1419.
- B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Cooling the collective motion of trapped ions to initialize a quantum register,” Physical Review Letters 81, 1525–1528 (1998).
- S. L. Zhu, C. Monroe, and L. M. Duan, “Trapped ion quantum computation with transverse phonon modes,” Physical Review Letters 97, 050505 (2006).
- E. Arenskötter, S. Kucera, O. Elshehy, M. Bergerhoff, M. Kreis, L. Brunel, and J. Eschner, “Full Bell-basis measurement of an atom-photon 2-qubit state and its application for quantum networks,” arXiv:2301.06091 [quant-ph] (2023).
- P. Drmota, D. Main, D. P. Nadlinger, B. C. Nichol, M. A. Weber, E. M. Ainley, A. Agrawal, R. Srinivas, G. Araneda, C. J. Ballance, and D. M. Lucas, “Robust quantum memory in a trapped-ion quantum network Node,” Physical Review Letters 130, 090803 (2023).
- S. Santra, S. Muralidharan, M. Lichtman, L. Jiang, C. Monroe, and V. S. Malinovsky, “Quantum repeaters based on two species trapped ions,” New Journal of Physics 21, 1–10 (2019).