Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facial Forgery-based Deepfake Detection using Fine-Grained Features (2310.07028v1)

Published 10 Oct 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Facial forgery by deepfakes has caused major security risks and raised severe societal concerns. As a countermeasure, a number of deepfake detection methods have been proposed. Most of them model deepfake detection as a binary classification problem using a backbone convolutional neural network (CNN) architecture pretrained for the task. These CNN-based methods have demonstrated very high efficacy in deepfake detection with the Area under the Curve (AUC) as high as $0.99$. However, the performance of these methods degrades significantly when evaluated across datasets and deepfake manipulation techniques. This draws our attention towards learning more subtle, local, and discriminative features for deepfake detection. In this paper, we formulate deepfake detection as a fine-grained classification problem and propose a new fine-grained solution to it. Specifically, our method is based on learning subtle and generalizable features by effectively suppressing background noise and learning discriminative features at various scales for deepfake detection. Through extensive experimental validation, we demonstrate the superiority of our method over the published research in cross-dataset and cross-manipulation generalization of deepfake detectors for the majority of the experimental scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. L. Li, J. Bao, H. Yang, D. Chen, and F. Wen, “Faceshifter: Towards high fidelity and occlusion aware face swapping,” ArXiv, vol. abs/1912.13457, 2019.
  2. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE CVPR, 2016, pp. 770–778.
  3. F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in IEEE CVPR, 2017, pp. 1251–1258.
  4. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in ICML.   PMLR, 2019, pp. 6105–6114.
  5. V. S. Katamneni and A. Rattani, “MIS-AVioDD: Modality invariant and specific representation for audio-visual deepfake detection,” arXiv preprint arXiv:2310.02234, 2023.
  6. A. V. Nadimpalli and A. Rattani, “ProActive deepfake detection using gan-based visible watermarking,” ACM Trans. Multimedia Comput. Commun. Appl., 2023.
  7. A. Nadimpalli and A. Rattani, “On improving cross-dataset generalization of deepfake detectors,” in IEEE CVPRW, 2022, pp. 91–99.
  8. D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, “Mesonet: a compact facial video forgery detection network,” in IEEE WIFS, 2018, pp. 1–7.
  9. Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu, “Celeb-df: A large-scale challenging dataset for deepfake forensics,” in IEEE CVPR, 2020, pp. 3207–3216.
  10. A. V. Nadimpalli and A. Rattani, “GBDF: Gender balanced deepfake dataset towards fair deepfake detection,” in ICPR Workshops, 2022.
  11. V. S. Katamneni, A. V. Nadimpalli, and A. Rattani, “Demographic fairness and accountability of audio and video-based unimodal and bi-modal deepfake detectors,” in Face Recognition Across the Imaging Spectrum (FRAIS), T. Bourlai, Ed.   Springer, 2023.
  12. T. Gebru, J. Hoffman, and L. Fei-Fei, “Fine-grained recognition in the wild: A multi-task domain adaptation approach,” in IEEE ICCV, 2017, pp. 1349–1358.
  13. J. He, J.-N. Chen, S. Liu, A. Kortylewski, C. Yang, Y. Bai, and C. Wang, “Transfg: A transformer architecture for fine-grained recognition,” in AAAI Conference, vol. 36, no. 1, 2022, pp. 852–860.
  14. T. Hu, H. Qi, Q. Huang, and Y. Lu, “See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification,” arXiv preprint arXiv:1901.09891, 2019.
  15. H. Zheng, J. Fu, T. Mei, and J. Luo, “Learning multi-attention convolutional neural network for fine-grained image recognition,” in 2017 IEEE ICCV, 2017, pp. 5219–5227.
  16. P.-Y. Chou, Y.-Y. Kao, and C.-H. Lin, “Fine-grained visual classification with high-temperature refinement and background suppression,” arXiv preprint arXiv:2303.06442, 2023.
  17. H. Zhao, W. Zhou, D. Chen, T. Wei, W. Zhang, and N. Yu, “Multi-attentional deepfake detection,” in IEEE CVPR, 2021, pp. 2185–2194.
  18. X. Guo, X. Liu, Z. Ren, S. Grosz, I. Masi, and X. Liu, “Hierarchical fine-grained image forgery detection and localization,” in IEEE CVPR, 2023, pp. 3155–3165.
  19. M. Du, S. Pentyala, Y. Li, and X. Hu, “Towards generalizable deepfake detection with locality-aware autoencoder,” in ACM Intl. Conf. on Information & Knowledge Management, 2020, pp. 325–334.
  20. K. Sun, T. Yao, S. Chen, S. Ding, L. Jilin, and R. Ji, “Dual contrastive learning for general face forgery detection,” in AAAI Conference, 2021.
  21. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE CVPR, pp. 770–778, 2016.
  22. F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in 2017 IEEE CVPR.   Los Alamitos, CA, USA: IEEE Computer Society, jul 2017, pp. 1800–1807.
  23. Y. Li and S. Lyu, “Exposing deepfake videos by detecting face warping artifacts,” in IEEE CVPRW, June 2019.
  24. H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen, “Multi-task learning for detecting and segmenting manipulated facial images and videos,” 2019 IEEE BTAS, pp. 1–8, 2019.
  25. S. Ramachandran, A. V. Nadimpalli, and A. Rattani, “An experimental evaluation on deepfake detection using deep face recognition,” in 2021 IEEE ICCST, 2021, pp. 1–6.
  26. S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in IEEE CVPR, 2018, pp. 8759–8768.
  27. A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner, “Faceforensics++: Learning to detect manipulated facial images,” in IEEE ICCV, 2019, pp. 1–11.
  28. B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. C. Ferrer, “The deepfake detection challenge (dfdc) dataset,” 2020.
  29. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in IEEE CVPR, 2021, pp. 10 012–10 022.
  30. O. De Lima, S. Franklin, S. Basu, B. Karwoski, and A. George, “Deepfake detection using spatiotemporal convolutional networks,” arXiv preprint arXiv:2006.14749, 2020.
  31. A. e. a. Dosovitskiy, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  32. Z. Pan, J. Cai, and B. Zhuang, “Fast vision transformers with hilo attention,” Adv. Neural Inf. Process. Syst., vol. 35, 2022.
  33. Y. Luo, Y. Zhang, J. Yan, and W. Liu, “Generalizing face forgery detection with high-frequency features,” 2021 IEEE CVPR, pp. 16 312–16 321, 2021.
  34. Y. Qian, G. Yin, L. Sheng, Z. Chen, and J. Shao, “Thinking in frequency: Face forgery detection by mining frequency-aware clues,” in ECCV, 2020.
  35. L. Zhao, M. Zhang, H. Ding, and X. Cui, “Fine-grained deepfake detection based on cross-modality attention,” Neural Comput. Appl., vol. 35, no. 15, pp. 10 861–10 874, 2023.
  36. R. Syed Abd Rahman, Z. Omer, B. A. Ahmed, S. Baloch et al., “Multi attention based approach for deepfake face and expression swap detection and localization,” 2022.
  37. K. Sun, H. Liu, Q. Ye, Y. Gao, J. Liu, L. Shao, and R. Ji, “Domain general face forgery detection by learning to weight,” in AAAI Conference, 2021.
  38. H. Wu, P. Wang, X. Wang, J. Xiang, and R. Gong, “Ggvit: Multistream vision transformer network in face2face facial reenactment detection,” in 2022 26th ICPR.   IAPR, 2022, pp. 2335–2341.
  39. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in 2017 IEEE ICCV, 2017, pp. 618–626.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Aakash Varma Nadimpalli (6 papers)
  2. Ajita Rattani (28 papers)
Citations (1)