Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion Prior Regularized Iterative Reconstruction for Low-dose CT (2310.06949v1)

Published 10 Oct 2023 in eess.IV, cs.LG, and physics.med-ph

Abstract: Computed tomography (CT) involves a patient's exposure to ionizing radiation. To reduce the radiation dose, we can either lower the X-ray photon count or down-sample projection views. However, either of the ways often compromises image quality. To address this challenge, here we introduce an iterative reconstruction algorithm regularized by a diffusion prior. Drawing on the exceptional imaging prowess of the denoising diffusion probabilistic model (DDPM), we merge it with a reconstruction procedure that prioritizes data fidelity. This fusion capitalizes on the merits of both techniques, delivering exceptional reconstruction results in an unsupervised framework. To further enhance the efficiency of the reconstruction process, we incorporate the Nesterov momentum acceleration technique. This enhancement facilitates superior diffusion sampling in fewer steps. As demonstrated in our experiments, our method offers a potential pathway to high-definition CT image reconstruction with minimized radiation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography,” Journal of Theoretical Biology, vol. 29, no. 3, pp. 471–481, 1970.
  2. J. Trampert and J.-J. Leveque, “Simultaneous iterative reconstruction technique: Physical interpretation based on the generalized least squares solution,” Journal of Geophysical Research: Solid Earth, vol. 95, no. B8, pp. 12 553–12 559, 1990.
  3. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging, vol. 6, no. 1, pp. 81–94, 1984.
  4. J.-B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh, “A three-dimensional statistical approach to improved image quality for multislice helical CT,” Medical Physics, vol. 34, no. 11, pp. 4526–4544, 2007.
  5. W. Xia, H. Shan, G. Wang, and Y. Zhang, “Physics-/model-based and data-driven methods for low-dose computed tomography: A survey,” IEEE Signal Processing Magazine, vol. 40, no. 2, pp. 89–100, 2023.
  6. G. Yu, L. Li, J. Gu, and L. Zhang, “Total variation based iterative image reconstruction,” in International Workshop on Computer Vision for Biomedical Image Applications.   Springer, 2005, pp. 526–534.
  7. S. Niu, Y. Gao, Z. Bian, J. Huang, W. Chen, G. Yu, Z. Liang, and J. Ma, “Sparse-view X-ray CT reconstruction via total generalized variation regularization,” Physics in Medicine & Biology, vol. 59, no. 12, pp. 2997–3017, 2014.
  8. E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.
  9. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.
  10. Q. Xu, H. Yu, X. Mou, L. Zhang, J. Hsieh, and G. Wang, “Low-dose X-ray CT reconstruction via dictionary learning,” IEEE Transactions on Medical Imaging, vol. 31, no. 9, pp. 1682–1697, 2012.
  11. H. Gao, H. Yu, S. Osher, and G. Wang, “Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM),” Inverse Problems, vol. 27, no. 11, p. 115012, 2011.
  12. Y. Zhang, Y. Xi, Q. Yang, W. Cong, J. Zhou, and G. Wang, “Spectral CT reconstruction with image sparsity and spectral mean,” IEEE Transactions on Computational Imaging, vol. 2, no. 4, pp. 510–523, 2016.
  13. Y. Chen, D. Gao, C. Nie, L. Luo, W. Chen, X. Yin, and Y. Lin, “Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior,” Computerized Medical Imaging and Graphics, vol. 33, no. 7, pp. 495–500, 2009.
  14. I. Y. Chun, X. Zheng, Y. Long, and J. A. Fessler, “Sparse-view X-ray CT reconstruction using ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT regularization with learned sparsifying transform,” in International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, 2017, pp. 115–9.
  15. W. Wu, Y. Zhang, Q. Wang, F. Liu, P. Chen, and H. Yu, “Low-dose spectral CT reconstruction using image gradient ℓ0subscriptℓ0\ell_{0}roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT–norm and tensor dictionary,” Applied Mathematical Modelling, vol. 63, pp. 538–557, 2018.
  16. W. Wu, D. Hu, K. An, S. Wang, and F. Luo, “A high-quality photon-counting CT technique based on weight adaptive total-variation and image-spectral tensor factorization for small animals imaging,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–14, 2020.
  17. P. Bao, W. Xia, K. Yang, W. Chen, M. Chen, Y. Xi, S. Niu, J. Zhou, H. Zhang, H. Sun et al., “Convolutional sparse coding for compressed sensing CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 38, no. 11, pp. 2607–2619, 2019.
  18. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
  19. G. Wang, “A perspective on deep imaging,” IEEE Access, vol. 4, pp. 8914–8924, 2016.
  20. W. Xia, Z. Lu, Y. Huang, Z. Shi, Y. Liu, H. Chen, Y. Chen, J. Zhou, and Y. Zhang, “MAGIC: Manifold and graph integrative convolutional network for low-dose CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3459–3472, 2021.
  21. H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, “Low-dose CT via convolutional neural network,” Biomedical Optics Express, vol. 8, no. 2, pp. 679–694, 2017.
  22. H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, “Low-dose CT with a residual encoder-decoder convolutional neural network,” IEEE Transactions on Medical Imaging, vol. 36, no. 12, pp. 2524–2535, 2017.
  23. K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, 2017.
  24. E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction,” Medical Physics, vol. 44, no. 10, pp. e360–e375, 2017.
  25. Y. S. Han, J. Yoo, and J. C. Ye, “Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis,” arXiv preprint arXiv:1611.06391, 2016.
  26. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  27. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” in Advances in Neural Information Processing Systems, vol. 30, 2017.
  28. J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14.   Springer, 2016, pp. 694–711.
  29. Q. Yang, P. Yan, Y. Zhang et al., “Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1348–1357, 2018.
  30. B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, “Image reconstruction by domain-transform manifold learning,” Nature, vol. 555, no. 7697, pp. 487–492, 2018.
  31. J. He, Y. Wang, and J. Ma, “Radon inversion via deep learning,” IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 2076–2087, 2020.
  32. J. He, S. Chen, H. Zhang, X. Tao, W. Lin, S. Zhang, D. Zeng, and J. Ma, “Downsampled imaging geometric modeling for accurate CT reconstruction via deep learning,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 2976–2985, 2021.
  33. D. Hu, J. Liu, T. Lv, Q. Zhao, Y. Zhang, G. Quan, J. Feng, Y. Chen, and L. Luo, “Hybrid-domain neural network processing for sparse-view CT reconstruction,” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 5, no. 1, pp. 88–98, 2020.
  34. Y. Zhang, D. Hu, Q. Zhao, G. Quan, J. Liu, Q. Liu, Y. Zhang, G. Coatrieux, Y. Chen, and H. Yu, “CLEAR: comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose CT imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 3089–3101, 2021.
  35. X. Tao, Y. Wang, L. Lin, Z. Hong, and J. Ma, “Learning to reconstruct CT images from the vvbp-tensor,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 3030–3041, 2021.
  36. H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao, J. Zhou, and G. Wang, “LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1333–1347, 2018.
  37. H. Gupta, K. H. Jin, H. Q. Nguyen et al., “CNN-based projected gradient descent for consistent CT image reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1440–1453, 2018.
  38. J. Adler and O. Öktem, “Learned primal-dual reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1322–1332, 2018.
  39. J. He, Y. Yang, Y. Wang, D. Zeng, Z. Bian, H. Zhang, J. Sun, Z. Xu, and J. Ma, “Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 38, no. 2, pp. 371–382, 2018.
  40. J. Xiang, Y. Dong, and Y. Yang, “FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1329–1339, 2021.
  41. W. Wu, D. Hu, W. Cong, H. Shan, S. Wang, C. Niu, P. Yan, H. Yu, V. Vardhanabhuti, and G. Wang, “Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimental results,” Patterns, vol. 3, no. 5, p. 100474, 2022.
  42. ——, “Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks,” Patterns, vol. 3, no. 5, p. 100475, 2022.
  43. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  44. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  45. W. Xia, Q. Lyu, and G. Wang, “Low-Dose CT Using Denoising Diffusion Probabilistic Model for 20×\times× Speedup,” arXiv preprint arXiv:2209.15136, 2022.
  46. W. Xia, W. Cong, and G. Wang, “Patch-based denoising diffusion probabilistic model for sparse-view CT reconstruction,” arXiv preprint arXiv:2211.10388, 2022.
  47. Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” arXiv preprint arXiv:2111.08005, 2022.
  48. H. Chung, B. Sim, D. Ryu, V. Dumoulin, and J. C. Ye, “Improving diffusion models for inverse problems using manifold constraints,” in Advances in Neural Information Processing Systems, vol. 35, 2022, pp. 25 683–25 696.
  49. G. Wang and M. Jiang, “Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART),” Journal of X-ray Science and Technology, vol. 12, no. 3, pp. 169–177, 2004.
  50. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.
  51. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
  52. C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps,” arXiv preprint arXiv:2206.00927, 2022.
  53. S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in IEEE Global Conference on Signal and Information Processing.   IEEE, 2013, pp. 945–948.
  54. A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” Journal of Mathematical Imaging and Vision, vol. 40, pp. 120–145, 2011.
Citations (7)

Summary

We haven't generated a summary for this paper yet.