Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extended Reality via Cooperative NOMA in Hybrid Cloud/Mobile-Edge Computing Networks (2310.06874v2)

Published 9 Oct 2023 in cs.IT, eess.SP, and math.IT

Abstract: Extended reality (XR) applications often perform resource-intensive tasks, which are computed remotely, a process that prioritizes the latency criticality aspect. To this end, this paper shows that through leveraging the power of the central cloud (CC), the close proximity of edge computers (ECs), and the flexibility of uncrewed aerial vehicles (UAVs), a UAV-aided hybrid cloud/mobile-edge computing architecture promises to handle the intricate requirements of future XR applications. In this context, this paper distinguishes between two types of XR devices, namely, strong and weak devices. The paper then introduces a cooperative non-orthogonal multiple access (Co-NOMA) scheme, pairing strong and weak devices, so as to aid the XR devices quality-of-user experience by intelligently selecting either the direct or the relay links toward the weak XR devices. A sum logarithmic-rate maximization problem is, thus, formulated so as to jointly determine the computation and communication resources, and link-selection strategy as a means to strike a trade-off between the system throughput and fairness. Subject to realistic network constraints, e.g., power consumption and delay, the optimization problem is then solved iteratively via discrete relaxations, successive-convex approximation, and fractional programming, an approach which can be implemented in a distributed fashion across the network. Simulation results validate the proposed algorithms performance in terms of log-rate maximization, delay-sensitivity, scalability, and runtime performance. The practical distributed Co-NOMA implementation is particularly shown to offer appreciable benefits over traditional multiple access and NOMA methods, highlighting its applicability in decentralized XR systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan, “6G wireless networks: Vision, requirements, architecture, and key technologies,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41, 2019.
  2. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2020.
  3. F. Tang, X. Chen, M. Zhao, and N. Kato, “The roadmap of communication and networking in 6G for the metaverse,” IEEE Wirel. Commun., pp. 1–15, 2022.
  4. A. M. Aslam, R. Chaudhary, A. Bhardwaj, I. Budhiraja, N. Kumar, and S. Zeadally, “Metaverse for 6G and beyond: The next revolution and deployment challenges,” IEEE Internet Things Mag., vol. 6, no. 1, pp. 32–39, 2023.
  5. M. Liubogoshchev, K. Ragimova, A. Lyakhov, S. Tang, and E. Khorov, “Adaptive cloud-based extended reality: Modeling and optimization,” IEEE Access, vol. 9, pp. 35 287–35 299, 2021.
  6. E. Waisberg, J. Ong, M. Masalkhi, N. Zaman, P. Sarker, A. G. Lee, and A. Tavakkoli, “Apple vision pro and why extended reality will revolutionize the future of medicine,” Irish Journal of Medical Science (1971-), pp. 1–2, 2023.
  7. N. Q. Hieu, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, “When virtual reality meets rate splitting multiple access: A joint communication and computation approach,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1536–1548, 2023.
  8. Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Compute- and data-intensive networks: The key to the metaverse,” in Proc. 1st 6GNet, 2022, pp. 1–8.
  9. Y. Huang, Y. Liu, and F. Chen, “NOMA-aided mobile edge computing via user cooperation,” IEEE Trans. Commun., vol. 68, no. 4, pp. 2221–2235, 2020.
  10. R.-J. Reifert, H. Dahrouj, A. A. Ahmad, A. Sezgin, T. Y. Al-Naffouri, B. Shihada, and M.-S. Alouini, “Rate-splitting and common message decoding in hybrid cloud/mobile edge computing networks,” IEEE J. Sel. Areas Commun., pp. 1–1, 2023.
  11. “Ericsson mobility report November 2022,” Ericson, Tech. Rep., Nov. 2020. [Online]. Available: https://www.ericsson.com/en/mobility-report/reports/november-2022
  12. J. Ren, Y. He, G. Huang, G. Yu, Y. Cai, and Z. Zhang, “An edge-computing based architecture for mobile augmented reality,” IEEE Network, vol. 33, no. 4, pp. 162–169, 2019.
  13. J. Kakar, S. Gherekhloo, Z. H. Awan, and A. Sezgin, “Fundamental limits on latency in cloud- and cache-aided hetnets,” in 2017 IEEE International Conference on Communications (ICC), 2017, pp. 1–6.
  14. W. Feng, J. Tang, N. Zhao, X. Zhang, X. Wang, K.-K. Wong, and J. A. Chambers, “Hybrid beamforming design and resource allocation for UAV-aided wireless-powered mobile edge computing networks with NOMA,” IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3271–3286, 2021.
  15. Q.-V. Pham, R. Ruby, F. Fang, D. C. Nguyen, Z. Yang, M. Le, Z. Ding, and W.-J. Hwang, “Aerial computing: A new computing paradigm, applications, and challenges,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8339–8363, 2022.
  16. Q.-V. Pham, Z. Ming, Z. Yang, Z. Ding, W.-J. Hwang et al., “The emergence of aerial computing: Applications and challenges,” 6G Wireless, pp. 117–148, 2023.
  17. Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181–2195, 2017.
  18. M. Zeng, W. Hao, O. A. Dobre, and Z. Ding, “Cooperative NOMA: State of the art, key techniques, and open challenges,” IEEE Network, vol. 34, no. 5, pp. 205–211, 2020.
  19. Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The communication perspective,” IEEE Commun. Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, 2017.
  20. I. Kruijff-Korbayová, R. Grafe, N. Heidemann, A. Berrang, C. Hussung, C. Willms, P. Fettke, M. Beul, J. Quenzel, D. Schleich, S. Behnke, J. Tiemann, J. Güldenring, M. Patchou, C. Arendt, C. Wietfeld, K. Daun, M. Schnaubelt, O. von Stryk, A. Lel, A. Miller, C. Röhrig, T. Straßmann, T. Barz, S. Soltau, F. Kremer, S. Rilling, R. Haseloff, S. Grobelny, A. Leinweber, G. Senkowski, M. Thurow, D. Slomma, and H. Surmann, “German rescue robotics center (DRZ): A holistic approach for robotic systems assisting in emergency response,” in 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), 2021, pp. 138–145.
  21. A. A. Ahmad, J. Kakar, R.-J. Reifert, and A. Sezgin, “UAV-assisted C-RAN with rate splitting under base station breakdown scenarios,” in IEEE ICC Workshops, 2019, pp. 1–6.
  22. G. Lee, W. Saad, and M. Bennis, “Online optimization for uav-assisted distributed fog computing in smart factories of industry 4.0,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6.
  23. H. Wu, Z. Wei, Y. Hou, N. Zhang, and X. Tao, “Cell-edge user offloading via flying UAV in non-uniform heterogeneous cellular networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2411–2426, 2020.
  24. F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems,” IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1927–1941, 2018.
  25. Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient resource allocation in UAV-enabled mobile edge computing networks,” IEEE Trans. Wirel. Commun., vol. 18, no. 9, pp. 4576–4589, 2019.
  26. J. Ren, Y. He, G. Yu, and G. Y. Li, “Joint communication and computation resource allocation for cloud-edge collaborative system,” in Proc. IEEE WCNC, 2019, pp. 1–6.
  27. J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge computing for latency minimization,” IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 5031–5044, 2019.
  28. R.-J. Reifert, H. Dahrouj, B. Shihada, A. Sezgin, T. Y. Al-Naffouri, and M.-S. Alouini, “Joint communication and computation in hybrid cloud/mobile edge computing networks,” in Proc. IEEE Globecom Workshops, 2022, pp. 1224–1229.
  29. Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei, “Energy-efficient noma-based mobile edge computing offloading,” IEEE Commun. Lett., vol. 23, no. 2, pp. 310–313, 2019.
  30. A. Rauniyar, O. N. Østerbø, J. E. Håkegård, and P. Engelstad, “Exploiting cooperative downlink NOMA in D2D communications,” Sensors, vol. 23, no. 8, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/8/3958
  31. M. Obeed, H. Dahrouj, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “User pairing, link selection, and power allocation for cooperative NOMA hybrid VLC/RF systems,” IEEE Trans. Wirel. Commun., vol. 20, no. 3, pp. 1785–1800, 2021.
  32. Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 938–953, 2016.
  33. B. Li, F. Si, W. Zhao, and H. Zhang, “Wireless powered mobile edge computing with NOMA and user cooperation,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1957–1961, 2021.
  34. B. Su, Q. Ni, W. Yu, and H. Pervaiz, “Optimizing computation efficiency for NOMA-assisted mobile edge computing with user cooperation,” IEEE Trans. Green Commun. Netw., vol. 5, no. 2, pp. 858–867, 2021.
  35. D. Wang, F. Zhou, W. Lin, Z. Ding, and N. Al-Dhahir, “Cooperative hybrid nonorthogonal multiple access-based mobile-edge computing in cognitive radio networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 1104–1117, 2022.
  36. A. Chaaban and A. Sezgin, “Multi-hop relaying: An end-to-end delay analysis,” IEEE Transactions on Wireless Communications, vol. 15, no. 4, pp. 2552–2561, 2016.
  37. M. Kovacova, V. Machova, and D. Bennett, “Immersive extended reality technologies, data visualization tools, and customer behavior analytics in the metaverse commerce,” J. Self-Gov. Manag. Econ., vol. 10, no. 2, pp. 7–21, 2022.
  38. M. Elawady and A. Sarhan, “Mixed reality applications powered by ioe and edge computing: A survey,” in Internet of Things—Applications and Future, A. Z. Ghalwash, N. El Khameesy, D. A. Magdi, and A. Joshi, Eds.   Singapore: Springer Singapore, 2020, pp. 125–138.
  39. B. Trinh and G.-M. Muntean, “A deep reinforcement learning-based offloading scheme for multi-access edge computing-supported extended reality systems,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 1254–1264, 2023.
  40. C. Chaccour, W. Saad, M. Debbah, and H. V. Poor, “Joint sensing, communication, and ai: A trifecta for resilient THz user experiences,” 2023. [Online]. Available: https://arxiv.org/abs/2305.00135
  41. L. Liu and W. Yu, “Cross-layer design for downlink multihop cloud radio access networks with network coding,” IEEE Trans. Signal Process., vol. 65, no. 7, pp. 1728–1740, Apr. 2017.
  42. J. Kakar and A. Sezgin, “A survey on robust interference management in wireless networks,” Entropy, vol. 19, no. 7, 2017. [Online]. Available: https://www.mdpi.com/1099-4300/19/7/362
  43. B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326–1339, 2014.
  44. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
  45. M. Lobo, L. Vandenberghe, S. P. Boyd, and H. Lebret, “Applications of second-order cone programming,” Linear Algebra and its Applications, vol. 284, pp. 193–228, 1998.
  46. B. Bandemer, A. Sezgin, and A. Paulraj, “On the noisy interference regime of the MISO gaussian interference channel,” in Proc. 42nd ACSSC, 2008, pp. 1098–1102.
  47. A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 569–572, Dec 2014.
  48. K. Shen and W. Yu, “FPLinQ: A cooperative spectrum sharing strategy for device-to-device communications,” in Proc. 2017 IEEE ISIT, 2017, pp. 2323–2327.
  49. R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared systems,” Digital Equipment Corporation, Tech. Rep. DEC-TR-301, 1984.
  50. A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, “Globally optimal energy-efficient power control and receiver design in wireless networks,” IEEE Transactions on Signal Processing, vol. 65, no. 11, pp. 2844–2859, 2017.
  51. B. R. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathematical programs,” Operations research, vol. 26, no. 4, pp. 681–683, 1978.
  52. K. Shen and W. Yu, “Fractional programming for communication systems part I: Power control and beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Robert-Jeron Reifert (11 papers)
  2. Hayssam Dahrouj (40 papers)
  3. Aydin Sezgin (147 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.