Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum support vector data description for anomaly detection (2310.06375v1)

Published 10 Oct 2023 in quant-ph

Abstract: Anomaly detection is a critical problem in data analysis and pattern recognition, finding applications in various domains. We introduce quantum support vector data description (QSVDD), an unsupervised learning algorithm designed for anomaly detection. QSVDD utilizes a shallow-depth quantum circuit to learn a minimum-volume hypersphere that tightly encloses normal data, tailored for the constraints of noisy intermediate-scale quantum (NISQ) computing. Simulation results on the MNIST and Fashion MNIST image datasets demonstrate that QSVDD outperforms both quantum autoencoder and deep learning-based approaches under similar training conditions. Notably, QSVDD offers the advantage of training an extremely small number of model parameters, which grows logarithmically with the number of input qubits. This enables efficient learning with a simple training landscape, presenting a compact quantum machine learning model with strong performance for anomaly detection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.