Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Dengue Risk Globally Using Non-Markovian Models (2310.06158v1)

Published 9 Oct 2023 in stat.AP

Abstract: Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we advance existing research by developing a mechanistic model for the mosquito life cycle that accurately accounts for the non-Markovian nature of the process. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area. Furthermore, we demonstrate how to reduce the model to the corresponding differential equations, enabling us to utilize existing methods for analyzing the system and fitting the model to observations. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models.

Summary

We haven't generated a summary for this paper yet.