Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric perturbations in Noncommutative Gravity (2310.06038v2)

Published 9 Oct 2023 in hep-th, gr-qc, math-ph, and math.MP

Abstract: We use the framework of Hopf algebra and noncommutative differential geometry to build a noncommutative (NC) theory of gravity in a bottom-up approach. Noncommutativity is introduced via deformed Hopf algebra of diffeomorphisms by means of a Drinfeld twist. The final result of the construction is a general formalism for obtaining NC corrections to the classical theory of gravity for a wide class of deformations and a general background. This also includes a novel proposal for noncommutative Einstein manifold. Moreover, the general construction is applied to the case of a linearized gravitational perturbation theory to describe a NC deformation of the metric perturbations. We specifically present an example for the Schwarzschild background and axial perturbations, which gives rise to a generalization of the work by Regge and Wheeler. All calculations are performed up to first order in perturbation of the metric and noncommutativity parameter. The main result is the noncommutative Regge-Wheeler potential. Finally, we comment on some differences in properties between the Regge-Wheeler potential and its noncommutative counterpart.

Citations (6)

Summary

We haven't generated a summary for this paper yet.