Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel Network Science Algorithm for Improving Triage of Patients (2310.05996v1)

Published 9 Oct 2023 in cs.LG

Abstract: Patient triage plays a crucial role in healthcare, ensuring timely and appropriate care based on the urgency of patient conditions. Traditional triage methods heavily rely on human judgment, which can be subjective and prone to errors. Recently, a growing interest has been in leveraging AI to develop algorithms for triaging patients. This paper presents the development of a novel algorithm for triaging patients. It is based on the analysis of patient data to produce decisions regarding their prioritization. The algorithm was trained on a comprehensive data set containing relevant patient information, such as vital signs, symptoms, and medical history. The algorithm was designed to accurately classify patients into triage categories through rigorous preprocessing and feature engineering. Experimental results demonstrate that our algorithm achieved high accuracy and performance, outperforming traditional triage methods. By incorporating computer science into the triage process, healthcare professionals can benefit from improved efficiency, accuracy, and consistency, prioritizing patients effectively and optimizing resource allocation. Although further research is needed to address challenges such as biases in training data and model interpretability, the development of AI-based algorithms for triaging patients shows great promise in enhancing healthcare delivery and patient outcomes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. C. Parmeggiani, R. Abbate, P. Marinelli, and I. F. Angelillo, “Healthcare workers and health care-associated infections: knowledge, attitudes, and behavior in emergency departments in italy,” BMC infectious diseases, vol. 10, pp. 1–9, 2010.
  2. G. Savioli, I. F. Ceresa, N. Gri, G. Bavestrello Piccini, Y. Longhitano, C. Zanza, A. Piccioni, C. Esposito, G. Ricevuti, and M. A. Bressan, “Emergency department overcrowding: understanding the factors to find corresponding solutions,” Journal of personalized medicine, vol. 12, no. 2, p. 279, 2022.
  3. S. Bambi, G. Becattini, and M. Ruggeri, “The new emergency department “tuscan triage system”. validation study,” International Emergency Nursing, vol. 57, p. 101014, 2021.
  4. A. N. Meyer, V. L. Payne, D. W. Meeks, R. Rao, and H. Singh, “Physicians’ diagnostic accuracy, confidence, and resource requests: a vignette study,” JAMA internal medicine, vol. 173, no. 21, pp. 1952–1958, 2013.
  5. A. P. Putri, A. Widiyanto, R. T. Handayani, A. T. Darmayanti et al., “Australasian triage scale (ats): Literature review,” Journal of Borneo Holistic Health, vol. 3, no. 1, pp. 20–25, 2020.
  6. R. C. Wuerz, D. Travers, N. Gilboy, D. R. Eitel, A. Rosenau, and R. Yazhari, “Implementation and refinement of the emergency severity index,” Academic Emergency Medicine, vol. 8, no. 2, pp. 170–176, 2001.
  7. T. R. M. Azeredo, H. M. Guedes, R. A. R. de Almeida, T. C. M. Chianca, and J. C. A. Martins, “Efficacy of the manchester triage system: a systematic review,” International emergency nursing, vol. 23, no. 2, pp. 47–52, 2015.
  8. M. J Murray, “The canadian triage and acuity scale: A canadian perspective on emergency department triage,” Emergency medicine, vol. 15, no. 1, pp. 6–10, 2003.
  9. M. J. Bullard, E. Musgrave, D. Warren, B. Unger, T. Skeldon, R. Grierson, E. van der Linde, and J. Swain, “Revisions to the canadian emergency department triage and acuity scale (ctas) guidelines 2016,” Canadian Journal of Emergency Medicine, vol. 19, no. S2, pp. S18–S27, 2017.
  10. H. Kwon, Y. J. Kim, Y. H. Jo, J. H. Lee, J. H. Lee, J. Kim, J. E. Hwang, J. Jeong, and Y. J. Choi, “The korean triage and acuity scale: associations with admission, disposition, mortality and length of stay in the emergency department,” International Journal for Quality in Health Care, vol. 31, no. 6, pp. 449–455, 2019.
  11. C.-J. Ng, Z.-S. Yen, J. C.-H. Tsai, L. C. Chen, S. J. Lin, Y. Y. Sang, J.-C. Chen, T. N. W. Group et al., “Validation of the taiwan triage and acuity scale: a new computerised five-level triage system,” Emergency Medicine Journal, vol. 28, no. 12, pp. 1026–1031, 2011.
  12. G. D. Meyer, T. N. Meyer, and C. B. Gaunt, “Validity of the south african triage scale in a rural district hospital,” African Journal of Emergency Medicine, vol. 8, no. 4, pp. 145–149, 2018.
  13. D. S. Cheung and J. A. Grubenhoff, “Machine learning in clinical medicine still finding its way,” JAMA Network Open, vol. 2, no. 1, pp. e186 926–e186 926, 2019.
  14. G. Canino, P. H. Guzzi, G. Tradigo, A. Zhang, and P. Veltri, “On the analysis of diseases and their related geographical data,” IEEE journal of biomedical and health informatics, vol. 21, no. 1, pp. 228–237, 2015.
  15. J. S. Hinson, D. A. Martinez, S. Cabral, K. George, M. Whalen, B. Hansoti, and S. Levin, “Triage performance in emergency medicine: a systematic review,” Annals of emergency medicine, vol. 74, no. 1, pp. 140–152, 2019.
  16. A. Defilippo, G. Bertucci, C. Zurzolo, P. Veltri, and P. H. Guzzi, “On the computational approaches for supporting triage systems,” Interdisciplinary Medicine, vol. 1, no. 3, p. e20230015, 2023.
  17. S. Levin, M. Toerper, E. Hamrock, J. S. Hinson, S. Barnes, H. Gardner, A. Dugas, B. Linton, T. Kirsch, and G. Kelen, “Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the emergency severity index,” Annals of emergency medicine, vol. 71, no. 5, pp. 565–574, 2018.
  18. J. Y. Yu, G. Y. Jeong, O. S. Jeong, D. K. Chang, and W. C. Cha, “Machine learning and initial nursing assessment-based triage system for emergency department,” Healthcare informatics research, vol. 26, no. 1, pp. 13–19, 2020.
  19. S. W. Choi, T. Ko, K. J. Hong, and K. H. Kim, “Machine learning-based prediction of korean triage and acuity scale level in emergency department patients,” Healthcare informatics research, vol. 25, no. 4, pp. 305–312, 2019.
  20. D. Kim, J. Oh, H. Im, M. Yoon, J. Park, and J. Lee, “Automatic classification of the korean triage acuity scale in simulated emergency rooms using speech recognition and natural language processing: a proof of concept study,” Journal of Korean Medical Science, vol. 36, no. 27, 2021.
  21. R. Inokuchi, M. Iwagami, Y. Sun, A. Sakamoto, and N. Tamiya, “Machine learning models predicting undertriage in telephone triage,” Annals of Medicine, vol. 54, no. 1, pp. 2990–2997, 2022.
  22. A. Allen, S. Mataraso, A. Siefkas, H. Burdick, G. Braden, R. P. Dellinger, A. McCoy, E. Pellegrini, J. Hoffman, A. Green-Saxena et al., “A racially unbiased, machine learning approach to prediction of mortality: algorithm development study,” JMIR public health and surveillance, vol. 6, no. 4, p. e22400, 2020.
  23. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.
  24. B. Teji, S. Roy, D. S. Dhami, D. Bhandari, and P. H. Guzzi, “Graph embedding techniques for predicting missing links in biological networks: An empirical evaluation,” IEEE Transactions on Emerging Topics in Computing, 2023.
  25. S. Gu, M. Jiang, P. H. Guzzi, and T. Milenković, “Modeling multi-scale data via a network of networks,” Bioinformatics, vol. 38, no. 9, pp. 2544–2553, 2022.
  26. P. H. Guzzi, M. Mina, C. Guerra, and M. Cannataro, “Semantic similarity analysis of protein data: assessment with biological features and issues,” Briefings in bioinformatics, vol. 13, no. 5, pp. 569–585, 2012.
  27. P. H. Guzzi and M. Zitnik, “Editorial deep learning and graph embeddings for network biology,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 19, no. 02, pp. 653–654, 2022.
  28. S. Roy, P. H. Guzzi, and J. Kalita, “Graph representation learning in biological network,” Frontiers in Bioinformatics, vol. 3, p. 1222711, 2023.
  29. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
  30. P. H. Guzzi, F. Cortese, G. C. Mannino, E. Pedace, E. Succurro, F. Andreozzi, and P. Veltri, “Analysis of age-dependent gene-expression in human tissues for studying diabetes comorbidities,” Scientific Reports, vol. 13, no. 1, p. 10372, 2023.
  31. I. Betkier, M. Oszczypała, J. Pobożniak, S. Sobieski, and P. Betkier, “Pocketfindergnn: A manufacturing feature recognition software based on graph neural networks (gnns) using pytorch geometric and networkx,” SoftwareX, vol. 23, p. 101466, 2023.
  32. S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention networks?” arXiv preprint arXiv:2105.14491, 2021.

Summary

We haven't generated a summary for this paper yet.