Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abel universal functions: boundary behaviour and Taylor polynomials (2310.05611v1)

Published 9 Oct 2023 in math.CV

Abstract: A holomorphic function $f$ on the unit disc $\mathbb{D}$ belongs to the class $\mathcal{U}A(\mathbb{D})$ of Abel universal functions if the family ${f_r: 0\leq r<1}$ of its dilates $f_r(z):=f(rz)$ is dense in the space of continuous functions on $K$, for any proper compact subset $K$ of the unit circle. It has been recently shown that $\mathcal{U}_A(\mathbb{D})$ is a dense $G{\delta}$ subset of the space of holomorphic functions on $\mathbb{D}$ endowed with the topology of local uniform convergence. In this paper, we develop further the theory of universal radial approximation by investigating the boundary behaviour of functions in $\mathcal{U}_A(\mathbb{D})$ (local growth, existence of Picard points and asymptotic values) and the convergence properties of their Taylor polynomials outside $\mathbb{D}$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.