Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collective motion in a sheet of microswimmers (2310.05554v2)

Published 9 Oct 2023 in cond-mat.soft, cond-mat.stat-mech, physics.bio-ph, and physics.flu-dyn

Abstract: Self-propelled micron-size particles suspended in a fluid, like bacteria or synthetic microswimmers, are strongly non-equilibrium systems where particle motility breaks the microscopic detailed balance, often resulting in large-scale collective motion. Previous theoretical work has identified long-range hydrodynamic interactions as the main driver of collective motion in unbounded dilute suspension of rear-actuated ("pusher") microswimmers. In contrast, most experimental studies of collective motion in microswimmer suspensions have been carried out in quasi-2-dimensional geometries such as in thin films or near solid or fluid interfaces, where both the swimmers' motion and their long-range flow fields become altered due to the proximity of a boundary. Here, we study numerically a minimal model of microswimmers in such a restricted geometry, where the particles move in the midplane between two no-slip walls. For pushers, we demonstrate collective motion with only short-ranged order, in contrast with the long-ranged flows observed in unbounded systems. For front-actuated ("puller") microswimmers, we discover a long-wavelength density instability resulting in the formation of dense microswimmer clusters. Both types of collective motion are fundamentally different from their previously studied counterparts in unbounded domains. Our results illustrate that hydrodynamic screening due to the presence of a wall is subdominant in determining the collective state of the suspension, which is instead dictated by the geometrical restriction of the swimmers' motion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601 (2009).
  2. M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
  3. C. Hohenegger and M. J. Shelley, Phys. Rev. E 81, 046311 (2010).
  4. D. L. Koch and G. Subramanian, Annu. Rev. Fluid Mech. 43, 637 (2011).
  5. D. Saintillan and M. J. Shelley, C. R. Physique 14, 497 (2013).
  6. S. S. Suarez and A. A. Pacey, Hum. Reprod. Update 12, 23 (2005).
  7. X. L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).
  8. A. Baskaran and M. C. Marchetti, Proc. Natl. Acad. Sci. USA 106, 15567 (2009).
  9. M. Leoni and T. Liverpool, Phys. Rev. Lett. 105, 238102 (2010).
  10. F. G. Woodhouse and R. E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012).
  11. N. Liron and S. Mochon, J. Eng. Math. 10, 287 (1976).
  12. A. Lefauve and D. Saintillan, Phys. Rev. E 89, 021002 (2014).
  13. R. Singh and R. Adhikari, Phys. Rev. Lett. 117, 228002 (2016).
  14. F. Alarcón and I. Pagonabarraga, J. Mol. Liq. 185, 56 (2013).
  15. A. W. Zantop and H. Stark, Soft Matter 16, 6400 (2020).
  16. N. Yoshinaga and T. B. Liverpool, Phys. Rev. E 96, 020603(R) (2017).
  17. A. Zöttl and H. Stark, Phys. Rev. Lett. 112, 118101 (2014).
  18. M. R. Nejad and J. M. Yeomans, Phys. Rev. Lett. 128, 048001 (2022).
  19. D. Saintillan and M. J. Shelley, Phys. Fluids 20, 123304 (2008).
  20. See Supplemental Information at [URL will be inserted by publisher] for movies of collective motion in sheets of pushers and pullers.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com