Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ParFam -- (Neural Guided) Symbolic Regression Based on Continuous Global Optimization (2310.05537v4)

Published 9 Oct 2023 in cs.AI and cs.LG

Abstract: The problem of symbolic regression (SR) arises in many different applications, such as identifying physical laws or deriving mathematical equations describing the behavior of financial markets from given data. Various methods exist to address the problem of SR, often based on genetic programming. However, these methods are usually complicated and involve various hyperparameters. In this paper, we present our new approach ParFam that utilizes parametric families of suitable symbolic functions to translate the discrete symbolic regression problem into a continuous one, resulting in a more straightforward setup compared to current state-of-the-art methods. In combination with a global optimizer, this approach results in a highly effective method to tackle the problem of SR. We theoretically analyze the expressivity of ParFam and demonstrate its performance with extensive numerical experiments based on the common SR benchmark suit SRBench, showing that we achieve state-of-the-art results. Moreover, we present an extension incorporating a pre-trained transformer network DL-ParFam to guide ParFam, accelerating the optimization process by up to two magnitudes. Our code and results can be found at https://github.com/Philipp238/parfam.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Artificial intelligence in physical sciences: Symbolic regression trends and perspectives. Archives of Computational Methods in Engineering, 30(6):3845–3865, 2023. doi: 10.1007/s11831-023-09922-z.
  2. Symbolic regression via genetic programming. In Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks, pages 173–178, 2000. doi: 10.1109/SBRN.2000.889734.
  3. Exhaustive symbolic regression. IEEE Transactions on Evolutionary Computation, pages 1–1, 2023. doi: 10.1109/TEVC.2023.3280250.
  4. A seq2seq approach to symbolic regression. In Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020.
  5. Neural symbolic regression that scales. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 936–945. PMLR, 2021. URL http://proceedings.mlr.press/v139/biggio21a.html.
  6. C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer New York, 2006.
  7. Revealing complex ecological dynamics via symbolic regression. BioEssays, 41(12):1900069, 2019. doi: 10.1002/bies.201900069.
  8. M. Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl. arXiv preprint arXiv:2305.01582, 2023.
  9. S. Desai and A. Strachan. Parsimonious neural networks learn interpretable physical laws. Scientific reports, 11(1):12761, 2021.
  10. Deep Learning. Adaptive computation and machine learning. MIT Press, 2016. URL http://www.deeplearningbook.org.
  11. M. He and L. Zhang. Machine learning and symbolic regression investigation on stability of mxene materials. Computational Materials Science, 196:110578, 2021. doi: https://doi.org/10.1016/j.commatsci.2021.110578.
  12. Deep generative symbolic regression. In The Eleventh International Conference on Learning Representations. OpenReview.net, 2023. URL https://openreview.net/pdf?id=o7koEEMA1bR.
  13. End-to-end symbolic regression with transformers. In Advances in Neural Information Processing Systems, 2022. URL http://papers.nips.cc/paper_files/paper/2022.
  14. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  15. Inference of compact nonlinear dynamic models by epigenetic local search. Engineering Applications of Artificial Intelligence, 55:292–306, 2016. doi: 10.1016/j.engappai.2016.07.004.
  16. Contemporary symbolic regression methods and their relative performance. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, 2021. URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021.
  17. A unified framework for deep symbolic regression. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 33985–33998. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/dbca58f35bddc6e4003b2dd80e42f838-Paper-Conference.pdf.
  18. Symbolic expression transformer: A computer vision approach for symbolic regression. arXiv preprint arXiv:2205.11798, 2022.
  19. Z. Li and H. A. Scheraga. Monte carlo-minimization approach to the multiple-minima problem in protein folding. Proceedings of the National Academy of Sciences, 84(19):6611–6615, 1987. doi: 10.1073/pnas.84.19.6611.
  20. J. Liu and S. Guo. Symbolic regression in financial economics. In The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. OpenReview.net, 2023.
  21. SNR: Symbolic network-based rectifiable learning framework for symbolic regression. Neural Networks, 165:1021–1034, 2023. doi: 10.1016/j.neunet.2023.06.046. URL https://doi.org/10.1016/j.neunet.2023.06.046.
  22. Symbolic regression for interpretable scientific discovery. In Big-Data-Analytics in Astronomy, Science, and Engineering, pages 26–40. Springer International Publishing, 2022.
  23. G. Martius and C. H. Lampert. Extrapolation and learning equations. In 5th International Conference on Learning Representations, Workshop Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=BkgRp0FYe.
  24. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114.
  25. Symbolic regression via deep reinforcement learning enhanced genetic programming seeding. In Advances in Neural Information Processing Systems, volume 34, pages 24912–24923, 2021. URL https://proceedings.neurips.cc/paper/2021.
  26. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer New York, 2 edition, 2006. doi: 10.1007/978-0-387-40065-5.
  27. Z. Oplatkova and I. Zelinka. Symbolic regression and evolutionary computation in setting an optimal trajectory for a robot. In 18th International Workshop on Database and Expert Systems Applications (DEXA 2007), pages 168–172, 2007. doi: 10.1109/DEXA.2007.58.
  28. Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients. In 9th International Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=m5Qsh0kBQG.
  29. Prediction of dynamical systems by symbolic regression. Phys. Rev. E, 94:012214, 2016. doi: 10.1103/PhysRevE.94.012214.
  30. Learning equations for extrapolation and control. In Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 4439–4447. PMLR, 2018. URL http://proceedings.mlr.press/v80/sahoo18a.html.
  31. M. D. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–85, 2009. doi: 10.1126/science.1165893.
  32. M. D. Schmidt and H. Lipson. Age-fitness pareto optimization. In Genetic and Evolutionary Computation Conference, GECCO 2010, Proceedings, pages 543–544. ACM, 2010. doi: 10.1145/1830483.1830584.
  33. S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic regression. Science Advances, 6(16):eaay2631, 2020. doi: doi:10.1126/sciadv.aay2631.
  34. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
  35. Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. Journal of Physical Chemistry A, 101:5111–5116, 1997. doi: https://doi.org/10.1021/jp970984n.
  36. Symbolic regression in materials science. MRS Communications, 9(3):793–805, 2019. doi: 10.1557/mrc.2019.85.
  37. G. Woan. The Cambridge handbook of physics formulas. Cambridge University Press, 2000.
  38. Characterization of structures from x-ray scattering data using genetic algorithms. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1761):2827–2848, 1999.
  39. Generalized simulated annealing algorithm and its application to the thomson model. Physics Letters A, 233(3):216–220, 1997.
Citations (2)

Summary

We haven't generated a summary for this paper yet.