Broadcast Channel Coding: Algorithmic Aspects and Non-Signaling Assistance (2310.05515v2)
Abstract: We address the problem of coding for classical broadcast channels, which entails maximizing the success probability that can be achieved by sending a fixed number of messages over a broadcast channel. For point-to-point channels, Barman and Fawzi found in~\cite{BF18} a $(1-e{-1})$-approximation algorithm running in polynomial time, and showed that it is \textrm{NP}-hard to achieve a strictly better approximation ratio. Furthermore, these algorithmic results were at the core of the limitations they established on the power of non-signaling assistance for point-to-point channels. It is natural to ask if similar results hold for broadcast channels, exploiting links between approximation algorithms of the channel coding problem and the non-signaling assisted capacity region. In this work, we make several contributions on algorithmic aspects and non-signaling assisted capacity regions of broadcast channels. For the class of deterministic broadcast channels, we describe a $(1-e{-1})2$-approximation algorithm running in polynomial time, and we show that the capacity region for that class is the same with or without non-signaling assistance. Finally, we show that in the value query model, we cannot achieve a better approximation ratio than $\Omega\left(\frac{1}{\sqrt{m}}\right)$ in polynomial time for the general broadcast channel coding problem, with $m$ the size of one of the outputs of the channel.
- Algorithmic aspects of optimal channel coding. IEEE Trans. Inf. Theory, 64(2):1038–1045, 2018. doi:10.1109/TIT.2017.2696963.
- Thomas M. Cover. Broadcast channels. IEEE Trans. Inf. Theory, 18(1):2–14, 1972. doi:10.1109/TIT.1972.1054727.
- Claude E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.
- Henry Herng-Jiunn Liao. Multiple access channels (Ph.D. Thesis abstr.). IEEE Trans. Inf. Theory, 19(2):253, 1973. doi:10.1109/TIT.1973.1054960.
- Rudolf Ahlswede. Multi-way communication channels. In 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, pages 23–52. Publishing House of the Hungarian Academy of Science, 1973.
- Patrick P. Bergmans. Random coding theorem for broadcast channels with degraded components. IEEE Trans. Inf. Theory, 19(2):197–207, 1973. doi:10.1109/TIT.1973.1054980.
- R.G. Gallager. Capacity and coding for degraded broadcast channels. Problemy Peredachi Informatsii, 10(3):3–14, 1974.
- Source coding with side information and a converse for degraded broadcast channels. IEEE Trans. Inf. Theory, 21(6):629–637, 1975. doi:10.1109/TIT.1975.1055469.
- Katalin Marton. The capacity region of deterministic broadcast channels. In Trans. Int. Symp. Inform. Theory, pages 243–248, 1977.
- Mark Semenovich Pinsker. Capacity of noiseless broadcast channel. Problemy Peredachi Informatsii, 14(2):28–34, 1978.
- Capacity of a broadcast channel with one deterministic component. Problemy Peredachi Informatsii, 16(1):24–34, 1980.
- Thomas M. Cover. An achievable rate region for the broadcast channel. IEEE Transactions on Information Theory, 21(4):399–404, 1975. doi:10.1109/TIT.1975.1055418.
- Edward C. van der Meulen. Random coding theorems for the general discrete memoryless broadcast channel. IEEE Trans. Inf. Theory, 21(2):180–190, 1975. doi:10.1109/TIT.1975.1055347.
- Katalin Marton. A coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inf. Theory, 25(3):306–311, 1979. doi:10.1109/TIT.1979.1056046.
- Hiroshi Sato. An outer bound to the capacity region of broadcast channels (corresp.). IEEE Trans. Inf. Theory, 24(3):374–377, 1978. doi:10.1109/TIT.1978.1055883.
- An outer bound to the capacity region of the broadcast channel. IEEE Trans. Inf. Theory, 53(1):350–355, 2007. doi:10.1109/TIT.2006.887492.
- New outer bounds for the two-receiver broadcast channel. In IEEE International Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, June 21-26, 2020, pages 1492–1497. IEEE, 2020. doi:10.1109/ISIT44484.2020.9174003.
- Bell nonlocality. Rev. Mod. Phys., 86:419–478, Apr 2014. doi:10.1103/RevModPhys.86.419.
- Entanglement-enhanced classical communication over a noisy classical channel. Phys. Rev. Lett., 106:110505, Mar 2011. doi:10.1103/PhysRevLett.106.110505.
- Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–1899, Mar 1993. doi:10.1103/PhysRevLett.70.1895.
- Entanglement-assisted classical capacity of noisy quantum channels. Physical Review Letters, 83(15):3081, 1999. doi:10.1103/PhysRevLett.83.3081.
- William Matthews. A linear program for the finite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes. IEEE Trans. Inf. Theory, 58(12):7036–7044, 2012. doi:10.1109/TIT.2012.2210695.
- Quantum and superquantum enhancements to two-sender, two-receiver channels. Phys. Rev. A, 95:052329, May 2017. doi:10.1103/PhysRevA.95.052329.
- Playing games with multiple access channels. Nature communications, 11(1):1–5, 2020. doi:10.1038/s41467-020-15240-w.
- On the separation of correlation-assisted sum capacities of multiple access channels. In IEEE International Symposium on Information Theory, ISIT 2022, Espoo, Finland, June 26 - July 1, 2022, pages 2756–2761. IEEE, 2022. doi:10.1109/ISIT50566.2022.9834459.
- Beating the sum-rate capacity of the binary adder channel with non-signaling correlations. In IEEE International Symposium on Information Theory, ISIT 2022, Espoo, Finland, June 26 - July 1, 2022, pages 2750–2755. IEEE, 2022. doi:10.1109/ISIT50566.2022.9834699.
- Multiple-access channel coding with non-signaling correlations. pages 1–1, 2023. doi:10.1109/TIT.2023.3301719.
- Quantum broadcast channels with cooperating decoders: An information-theoretic perspective on quantum repeaters. Journal of Mathematical Physics, 62(6):062204, 06 2021. arXiv:2011.09233, doi:10.1063/5.0038083.
- Tight approximation bounds for maximum multi-coverage. In Daniel Bienstock and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimization - 21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceedings, volume 12125 of Lecture Notes in Computer Science, pages 66–77. Springer, 2020. doi:10.1007/978-3-030-45771-6_6.
- Tight approximation guarantees for concave coverage problems. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 9:1–9:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.9.
- The dense k-subgraph problem. Algorithmica, 29(3):410–421, 2001. doi:10.1007/s004530010050.
- Paul Fermé. Approximation Algorithms for Channel Coding and Non-Signaling Correlations. PhD thesis, Université de Lyon, 2023.
- Inapproximability of densest κ𝜅\kappaitalic_κ-subgraph from average case hardness. Unpublished manuscript, 1, 2011. URL: https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf.
- Fair division - from cake-cutting to dispute resolution. Cambridge University Press, 1996.
- Hervé Moulin. Fair division and collective welfare. MIT Press, 2003.
- On the computational power of iterative auctions. In John Riedl, Michael J. Kearns, and Michael K. Reiter, editors, Proceedings 6th ACM Conference on Electronic Commerce (EC-2005), Vancouver, BC, Canada, June 5-8, 2005, pages 29–43. ACM, 2005. doi:10.1145/1064009.1064013.
- An improved approximation algorithm for combinatorial auctions with submodular bidders. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 1064–1073. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109675.
- Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In Lance Fortnow, John Riedl, and Tuomas Sandholm, editors, Proceedings 9th ACM Conference on Electronic Commerce (EC-2008), Chicago, IL, USA, June 8-12, 2008, pages 70–77. ACM, 2008. doi:10.1145/1386790.1386805.
- Negative association of random variables with applications. The Annals of Statistics, pages 286–295, 1983. doi:10.1214/aos/1176346079.
- Balls and bins: A study in negative dependence. Random Struct. Algorithms, 13(2):99–124, 1998. doi:10.7146/brics.v3i25.20006.
- Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963. doi:10.1080/01621459.1963.10500830.
- F.M.J. Willems. The maximal-error and average-error capacity region of the broadcast channel are identical : A direct proof. Problems of Control and Information Theory, 19(4):339–347, December 1990. URL: https://research.tue.nl/nl/publications/the-maximal-error-and-average-error-capacity-region-of-the-broadc.
- Understanding and using linear programming. Universitext. Springer, 2007. doi:10.1007/978-3-540-30717-4.
- Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 67–74. ACM, 2008. doi:10.1145/1374376.1374389.
- Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.