Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized solutions for a fractional $N/s$-Laplacian Choquard equation with exponential critical nonlinearities (2310.05477v2)

Published 9 Oct 2023 in math.AP

Abstract: In this paper, we are concerned with the following fractional $N/s$-Laplacian Choquard equation \begin{align*} \begin{cases} (-\Delta)s_{N/s}u=\lambda |u|{\frac{N}{s}-2}u +(I_\mu*F(u))f(u),\ \ \mbox{in}\ \mathbb{R}N, \displaystyle\int_{\mathbb{R}N}|u|{N/s} \mathrm{d}x=a{N/s}, \end{cases} \end{align*} where $s\in(0,1)$, $1<\frac{N}{s}\in \mathbb{N}+$, $a>0$ is a prescribed constant, $\lambda\in \mathbb{R}$, $I_\mu(x)=\frac{1}{|x|{\mu}}$ with $\mu\in(0,N)$, $F$ is the primitive function of $f$, and $f$ is a continuous function with exponential critical growth of Trudinger-Moser type. Under some suitable assumptions on $f$, we prove that the above problem admits a ground state solution for any given $a>0$, by using the constraint variational method and minimax technique.

Citations (2)

Summary

We haven't generated a summary for this paper yet.