Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulating near-field thermal transfer through temporal drivings: a quantum many-body theory (2310.05417v4)

Published 9 Oct 2023 in cond-mat.mes-hall and cond-mat.stat-mech

Abstract: The traditional approach to studying near-field thermal transfer is based on fluctuational electrodynamics. However, this approach may not be suitable for nonequilibrium states due to dynamic drivings. In our work, we introduce a theoretical framework to describe the phenomenon of near-field heat transfer between two objects when subjected to periodic time modulations. We utilize the machinery of nonequilibrium Green's function to derive general expressions for the DC energy current in Floquet space. Furthermore, we also obtain the energy current under the condition of small driving amplitude. The external drivings create a nonequilibrium state, which gives rise to various effects such as heat-transfer enhancement, heat-transfer suppression, and cooling. To illustrate these phenomena, we conduct numerical calculations on a system of Coulomb-coupled quantum dots, and specifically investigate the scenario of periodically driving electronic reservoir. In our calculations, we employ the $G_0W_0$ approximation, which does not require self-consistent iteration and is suitable for weak Coulomb interaction. Our theoretical formalism can be applied to study near-field energy transfer between two metallic plates under periodic time modulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. B. Pendry, Radiative exchange of heat between nanostructures, J. Phys.: Condens. Matter 11, 6621 (1999).
  2. A. I. Volokitin and B. N. J. Persson, Near-field radiative heat transfer and noncontact friction, Rev. Mod. Phys. 79, 1291 (2007).
  3. X. Liu, L. Wang, and Z. M. Zhang, Near-field thermal radiation: Recent progress and outlook, Nanoscale and Microscale Thermophys. Eng. 19, 98 (2015).
  4. J. C. Cuevas and F. J. García-Vidal, Radiative heat transfer, ACS Photonics 5, 3896 (2018).
  5. S. M. Rytov, Theory of Electrical Fluctuation and Thermal Radiation (Academy of Science of USSR, Moscow, 1953).
  6. D. Polder and M. Van Hove, Theory of radiative heat transfer between closely spaced bodies, Phys. Rev. B 4, 3303 (1971).
  7. Z. J. Coppens and J. G. Valentine, Spatial and temporal modulation of thermal emission, Adv. Mater. 29, 1701275 (2017).
  8. J. Kou and A. J. Minnich, Dynamic optical control of near-field radiative transfer, Opt. Express 26, A729 (2018).
  9. S. Buddhiraju, W. Li, and S. Fan, Photonic refrigeration from time-modulated thermal emission, Phys. Rev. Lett. 124, 077402 (2020).
  10. R. Yu and S. Fan, Manipulating coherence of near-field thermal radiation in time-modulated systems, Phys. Rev. Lett. 130, 096902 (2023a).
  11. R. Yu and S. Fan, Time-modulated near-field radiative heat transfer (2023b), arXiv:2310.08692 .
  12. S.-A. Biehs and G. S. Agarwal, Breakdown of detailed balance for thermal radiation by synthetic fields, Phys. Rev. Lett. 130, 110401 (2023a).
  13. S.-A. Biehs and G. S. Agarwal, Enhancement of synthetic magnetic field induced nonreciprocity via bound states in the continuum in dissipatively coupled systems, Phys. Rev. B 108, 035423 (2023b).
  14. J. E. Vázquez-Lozano and I. Liberal, Incandescent temporal metamaterials, Nat. Commun. 14, 4606 (2023).
  15. M. F. Picardi, K. N. Nimje, and G. T. Papadakis, Dynamic modulation of thermal emission—A tutorial, J. Appl. Phys. 133, 111101 (2023).
  16. J.-S. Wang and J. Peng, Capacitor physics in ultra-near-field heat transfer, EPL (Europhysics Letters) 118, 24001 (2017).
  17. J.-H. Jiang and J.-S. Wang, Caroli formalism in near-field heat transfer between parallel graphene sheets, Phys. Rev. B 96, 155437 (2017).
  18. G. Tang and J.-S. Wang, Heat transfer statistics in extreme-near-field radiation, Phys. Rev. B 98, 125401 (2018).
  19. J.-S. Wang and M. Antezza, Photon mediated energy, linear and angular momentum transport in fullerene and graphene systems beyond local equilibrium (2023), arXiv:2307.11361 .
  20. G. D. Mahan, Tunneling of heat between metals, Phys. Rev. B 95, 115427 (2017).
  21. R. Yu, A. Manjavacas, and F. J. García de Abajo, Ultrafast radiative heat transfer, Nat. Commun. 8, 2 (2017).
  22. J. L. Wise, D. M. Basko, and F. W. J. Hekking, Role of disorder in plasmon-assisted near-field heat transfer between two-dimensional metals, Phys. Rev. B 101, 205411 (2020).
  23. X. Ying and A. Kamenev, Plasmonic tuning of near-field heat transfer between graphene monolayers, Phys. Rev. B 102, 195426 (2020).
  24. A. L. Chudnovskiy, A. Levchenko, and A. Kamenev, Coulomb drag and heat transfer in strange metals, Phys. Rev. Lett. 131, 096501 (2023).
  25. H. Haug and A.-P. Jauho, Quantum kinetics in transport and optics of semiconductors, Vol. 2 (Springer, 2008).
  26. J. Chen, M. ShangGuan, and J. Wang, A gauge invariant theory for time dependent heat current, New J. Phys 17, 053034 (2015a).
  27. D. C. Langreth and P. Nordlander, Derivation of a master equation for charge-transfer processes in atom-surface collisions, Phys. Rev. B 43, 2541 (1991).
  28. Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512 (1992).
  29. M. Büttiker, A. Prêtre, and H. Thomas, Admittance of small conductors, Phys. Rev. Lett. 71, 465 (1993).
  30. B. Wang, J. Wang, and H. Guo, Current partition: A nonequilibrium Green’s function approach, Phys. Rev. Lett. 82, 398 (1999).
  31. G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge University Press, 2013).
  32. K. Chen, P. Santhanam, and S. Fan, Near-field enhanced negative luminescent refrigeration, Phys. Rev. Appl. 6, 024014 (2016).
  33. N. Tsuji, T. Oka, and H. Aoki, Correlated electron systems periodically driven out of equilibrium: Floquet+DMFTFloquetDMFT\text{Floquet}+\text{DMFT}Floquet + DMFT formalism, Phys. Rev. B 78, 235124 (2008).
  34. T. D. Honeychurch and D. S. Kosov, Quantum transport in driven systems with vibrations: Floquet nonequilibrium Green’s functions and the self-consistent Born approximation, Phys. Rev. B 107, 035410 (2023a).
  35. T. D. Honeychurch and D. S. Kosov, Floquet nonequilibrium Green’s functions with fluctuation-exchange approximation: Application to periodically driven capacitively coupled quantum dots (2023b), arXiv:2307.09774 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.