2000 character limit reached
Gorenstein acyclic complexes and finitistic dimensions (2310.05247v1)
Published 8 Oct 2023 in math.RA and math.RT
Abstract: Given a two-sided noetherian ring $A$ with a dualizing complex, we show that the big finitistic dimension of $A$ is finite if and only if every bounded below Gorenstein-projective-acyclic cochain complex of Gorenstein-projective $A$-modules is contractible. If $A$ is further assumed to be an Artin algebra, we also prove a Gorenstein variant of a theorem of Rickard, showing its finitistic dimension is finite in case its Gorenstein-injective derived category is generated by the Gorenstein-injective modules.