Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Influence of Camera-LiDAR Configuration on 3D Object Detection for Autonomous Driving (2310.05245v2)

Published 8 Oct 2023 in cs.RO

Abstract: Cameras and LiDARs are both important sensors for autonomous driving, playing critical roles in 3D object detection. Camera-LiDAR Fusion has been a prevalent solution for robust and accurate driving perception. In contrast to the vast majority of existing arts that focus on how to improve the performance of 3D target detection through cross-modal schemes, deep learning algorithms, and training tricks, we devote attention to the impact of sensor configurations on the performance of learning-based methods. To achieve this, we propose a unified information-theoretic surrogate metric for camera and LiDAR evaluation based on the proposed sensor perception model. We also design an accelerated high-quality framework for data acquisition, model training, and performance evaluation that functions with the CARLA simulator. To show the correlation between detection performance and our surrogate metrics, We conduct experiments using several camera-LiDAR placements and parameters inspired by self-driving companies and research institutions. Extensive experimental results of representative algorithms on nuScenes dataset validate the effectiveness of our surrogate metric, demonstrating that sensor configurations significantly impact point-cloud-image fusion based detection models, which contribute up to 30% discrepancy in terms of the average precision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Ye Li (155 papers)
  2. Hanjiang Hu (23 papers)
  3. Zuxin Liu (43 papers)
  4. Ding Zhao (172 papers)
  5. Xiaohao Xu (46 papers)
  6. Xiaonan Huang (32 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.