Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp (2310.05169v2)
Abstract: Physics Informed Neural Networks (PINNs) have been achieving ever newer feats of solving complicated PDEs numerically while offering an attractive trade-off between accuracy and speed of inference. A particularly challenging aspect of PDEs is that there exist simple PDEs which can evolve into singular solutions in finite time starting from smooth initial conditions. In recent times some striking experiments have suggested that PINNs might be good at even detecting such finite-time blow-ups. In this work, we embark on a program to investigate this stability of PINNs from a rigorous theoretical viewpoint. Firstly, we derive generalization bounds for PINNs for Burgers' PDE, in arbitrary dimensions, under conditions that allow for a finite-time blow-up. Then we demonstrate via experiments that our bounds are significantly correlated to the $\ell_2$-distance of the neurally found surrogate from the true blow-up solution, when computed on sequences of PDEs that are getting increasingly close to a blow-up.
- Jameson A, Martinelli L and Vassberg J 2002 Using computational fluid dynamics for aerodynamics–a critical assessment Proceedings of ICAS pp 2002–1
- Lagaris I, Likas A and Fotiadis D 1998 IEEE Transactions on Neural Networks 9 987–1000 URL https://doi.org/10.1109%2F72.712178
- Broomhead D and Lowe D 1988 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (UNITED KINGDOM) RSRE-MEMO-4148
- Karniadakis, GE and Kevrekidis 2021 Physics-informed machine learning
- E W, Han J and Jentzen A 2021 Nonlinearity 35 278–310 URL https://doi.org/10.1088%2F1361-6544%2Fac337f
- Raissi M, Perdikaris P and Karniadakis G E 2019 Journal of Computational physics 378 686–707
- Yu B et al. 2018 Communications in Mathematics and Statistics 6 1–12
- Sirignano J and Spiliopoulos K 2018 Journal of computational physics 375 1339–1364
- Kaiser E, Kutz J N and Brunton S L 2021 Data-driven discovery of koopman eigenfunctions for control (Preprint 1707.01146)
- Erichson N B, Muehlebach M and Mahoney M W 2019 Physics-informed autoencoders for lyapunov-stable fluid flow prediction (Preprint 1905.10866)
- Wandel N, Weinmann M and Klein R 2021 Physics of Fluids 33 047117 URL https://doi.org/10.1063%2F5.0047428
- Salvi C, Lemercier M and Gerasimovics A 2022 Neural stochastic pdes: Resolution-invariant learning of continuous spatiotemporal dynamics (Preprint 2110.10249)
- Wang S, Wang H and Perdikaris P 2021 Science Advances 7 eabi8605 (Preprint https://www.science.org/doi/pdf/10.1126/sciadv.abi8605) URL https://www.science.org/doi/abs/10.1126/sciadv.abi8605
- Arthurs C J and King A P 2021 Journal of Computational Physics 438 110364 ISSN 0021-9991 URL https://www.sciencedirect.com/science/article/pii/S002199912100259X
- Mishra S and Molinaro R 2022 IMA Journal of Numerical Analysis 43 1–43 ISSN 0272-4979 (Preprint https://academic.oup.com/imajna/article-pdf/43/1/1/49059512/drab093.pdf) URL https://doi.org/10.1093/imanum/drab093
- De Ryck T, Jagtap A D and Mishra S 2022 arXiv preprint arXiv:2203.09346
- Wang S, Teng Y and Perdikaris P 2021 SIAM Journal on Scientific Computing 43 A3055–A3081 (Preprint https://doi.org/10.1137/20M1318043) URL https://doi.org/10.1137/20M1318043
- Wang S, Sankaran S and Perdikaris P 2022 arXiv preprint arXiv:2203.07404
- Wintner A 1945 American Journal of Mathematics 67 277–284 ISSN 00029327, 10806377 URL http://www.jstor.org/stable/2371729
- Cooke K L 1955 Rendiconti del Circolo Matematico di Palermo 4 301–308 ISSN 1973-4409 URL https://doi.org/10.1007/BF02854201
- Pazy A 1983 Some Nonlinear Evolution Equations (New York, NY: Springer New York) pp 183–205 ISBN 978-1-4612-5561-1 URL https://doi.org/10.1007/978-1-4612-5561-1_6
- Lin Y, Sontag E D and Wang Y 1996 SIAM Journal on Control and Optimization 34 124–160 (Preprint https://doi.org/10.1137/S0363012993259981) URL https://doi.org/10.1137/S0363012993259981
- Stuart A M and Floater M S 1990 European Journal of Applied Mathematics 1 47–71
- Fujita H 1966 On the blowing up of solutions of the cauchy problem for u1+δu+u1+αsubscript𝑢1𝛿𝑢superscript𝑢1𝛼u_{1}+\delta u+u^{1+\alpha}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_δ italic_u + italic_u start_POSTSUPERSCRIPT 1 + italic_α end_POSTSUPERSCRIPT URL https://api.semanticscholar.org/CorpusID:118871869
- Fujita H 1969 Bulletin of the American Mathematical Society 75 132 – 135
- Herrero M A and Velazquez J J L 1997 Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 4, 24 633–683 URL http://www.numdam.org/item/ASNSP_1997_4_24_4_633_0/
- He S and Tadmor E 2019 Archive for Rational Mechanics and Analysis 232 951–986
- Chen J, Hou T Y and Huang D 2022 Annals of PDE 8 24
- Tanaka Y 2023 arXiv preprint arXiv:2304.13421
- Bebernes J and Kassoy D 1981 SIAM Journal on Applied Mathematics 40 476–484
- Lacey A 1983 SIAM Journal on Applied Mathematics 43 1350–1366
- Dold J 1991 Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 433 521–545
- Herrero M A and Velázquez J 1993 Israel Journal of Mathematics 81 321–341
- Lacey A A 1995 European Journal of Applied Mathematics 6 201–224
- Tao T 2016 Annals of PDE 2 1–79
- Tao T 2016 Journal of the American Mathematical Society 29 601–674
- Wang S, Yu X and Perdikaris P 2022 Journal of Computational Physics 449 110768 ISSN 0021-9991 URL https://www.sciencedirect.com/science/article/pii/S002199912100663X
- Johnson C and Szepessy A 1987 Mathematics of Computation - Math. Comput. 49 427–427
- Tadmor E 1991 SIAM Journal on Numerical Analysis 28 891–906 (Preprint https://doi.org/10.1137/0728048) URL https://doi.org/10.1137/0728048
- Nessyahu H and Tadmor E 1992 SIAM Journal on Numerical Analysis 29 1505–1519 (Preprint https://doi.org/10.1137/0729087) URL https://doi.org/10.1137/0729087
- Dziugaite G K and Roy D M 2017 arXiv preprint arXiv:1703.11008
- Neyshabur B, Bhojanapalli S and Srebro N 2017 arXiv preprint arXiv:1707.09564
- Mukherjee A 2020 A study of the mathematics of deep learning Ph.D. thesis The Johns Hopkins University
- Muthukumar R and Sulam J 2023 Sparsity-aware generalization theory for deep neural networks Proceedings of Thirty Sixth Conference on Learning Theory (Proceedings of Machine Learning Research vol 195) ed Neu G and Rosasco L (PMLR) pp 5311–5342 URL https://proceedings.mlr.press/v195/muthukumar23a.html
- Biazar J and Aminikhah H 2009 Mathematical and Computer Modelling 49 1394–1400
- Luo G and Hou T Y 2014 Proceedings of the National Academy of Sciences 111 12968–12973 (Preprint https://www.pnas.org/doi/pdf/10.1073/pnas.1405238111) URL https://www.pnas.org/doi/abs/10.1073/pnas.1405238111
- Elgindi T M 2021 Annals of Mathematics 194 647 – 727 URL https://doi.org/10.4007/annals.2021.194.3.2
- Chen J and Hou T Y 2021 Communications in Mathematical Physics 383 1559–1667
- Luo G and Hou T Y 2014 Multiscale Modeling & Simulation 12 1722–1776 (Preprint https://doi.org/10.1137/140966411) URL https://doi.org/10.1137/140966411
- DeVore R A and Scott L R 1984 SIAM Journal on Numerical Analysis 21 400–412