Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferable Availability Poisoning Attacks (2310.05141v2)

Published 8 Oct 2023 in cs.CR and cs.LG

Abstract: We consider availability data poisoning attacks, where an adversary aims to degrade the overall test accuracy of a machine learning model by crafting small perturbations to its training data. Existing poisoning strategies can achieve the attack goal but assume the victim to employ the same learning method as what the adversary uses to mount the attack. In this paper, we argue that this assumption is strong, since the victim may choose any learning algorithm to train the model as long as it can achieve some targeted performance on clean data. Empirically, we observe a large decrease in the effectiveness of prior poisoning attacks if the victim employs an alternative learning algorithm. To enhance the attack transferability, we propose Transferable Poisoning, which first leverages the intrinsic characteristics of alignment and uniformity to enable better unlearnability within contrastive learning, and then iteratively utilizes the gradient information from supervised and unsupervised contrastive learning paradigms to generate the poisoning perturbations. Through extensive experiments on image benchmarks, we show that our transferable poisoning attack can produce poisoned samples with significantly improved transferability, not only applicable to the two learners used to devise the attack but also to learning algorithms and even paradigms beyond.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yiyong Liu (5 papers)
  2. Michael Backes (157 papers)
  3. Xiao Zhang (435 papers)
Citations (2)