Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FluxGAN: A Physics-Aware Generative Adversarial Network Model for Generating Microstructures That Maintain Target Heat Flux (2310.04622v1)

Published 6 Oct 2023 in cond-mat.dis-nn and cs.LG

Abstract: We propose a physics-aware generative adversarial network model, FluxGAN, capable of simultaneously generating high-quality images of large microstructures and description of their thermal properties. During the training phase, the model learns about the relationship between the local structural features and the physical processes, such as the heat flux in the microstructures, due to external temperature gradients. Once trained, the model generates new structural and associated heat flux environments, bypassing the computationally expensive modeling. Our model provides a cost effective and efficient approach over conventional modeling techniques, such as the finite element method (FEM), for describing the thermal properties of microstructures. The conventional approach requires computational modeling that scales with the size of the microstructure model, therefore limiting the simulation to a given size, resolution, and complexity of the model. In contrast, the FluxGAN model uses synthesis-by-part approach and generates arbitrary large size images at low computational cost. We demonstrate that the model can be utilized to generate designs of thermal sprayed coatings that satisfies target thermal properties. Furthermore, the model is capable of generating coating microstructures and physical processes in three-dimensional (3D) domain after being trained on two-dimensional (2D) examples. Our approach has the potential to transform the design and optimization of thermal sprayed coatings for various applications, including high-temperature and long-duration operation of gas turbines for aircraft or ground-based power generators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. L. Yang, D. Zhang, and G. E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, SIAM Journal on Scientific Computing 42, A292 (2020).
  2. C. Jiang and A. B. Farimani, Deep learning convective flow using conditional generative adversarial networks, arXiv preprint arXiv:2005.06422  (2020).
  3. T. Karras, S. Laine, and T. Aila, A style-based generator architecture for generative adversarial networks, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2019) pp. 4401–4410.
  4. X. Huang and S. Belongie, Arbitrary style transfer in real-time with adaptive instance normalization, in Proceedings of the IEEE international conference on computer vision (2017) pp. 1501–1510.
  5. S. Gurumurthy, R. Kiran Sarvadevabhatla, and R. Venkatesh Babu, Deligan: Generative adversarial networks for diverse and limited data, in Proceedings of the IEEE conference on computer vision and pattern recognition (2017) pp. 166–174.
  6. R. Abdal, Y. Qin, and P. Wonka, Image2StyleGAN++: How to edit the embedded images?, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2020) pp. 8296–8305.
  7. T. R. Shaham, T. Dekel, and T. Michaeli, SinGAN: Learning a generative model from a single natural image, in Proceedings of the IEEE/CVF international conference on computer vision (2019) pp. 4570–4580.
  8. Y. Chen, S. Liu, and X. Wang, Learning continuous image representation with local implicit image function, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2021) pp. 8628–8638.
  9. S. Torquato and B. Lu, Chord-length distribution function for two-phase random media, Physical Review E 47, 2950 (1993).
  10. S. Torquato, Random heterogeneous materials (Springer., 2013).
  11. J. G. Berryman and S. C. Blair, Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions, Journal of applied Physics 60, 1930 (1986).
  12. A. Creswell and A. A. Bharath, Inverting the generator of a generative adversarial network, IEEE transactions on neural networks and learning systems 30, 1967 (2018).
  13. F. Ma, U. Ayaz, and S. Karaman, Invertibility of convolutional generative networks from partial measurements, Advances in Neural Information Processing Systems 31 (2018).
  14. R. Abdal, Y. Qin, and P. Wonka, Image2StyleGAN: How to embed images into the StyleGAN latent space?, in Proceedings of the IEEE/CVF international conference on computer vision (2019) pp. 4432–4441.
  15. S. Kench and S. J. Cooper, Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion, Nature Machine Intelligence 3, 299 (2021).
  16. A. Henkes and H. Wessels, Three-dimensional microstructure generation using generative adversarial neural networks in the context of continuum micromechanics, Computer Methods in Applied Mechanics and Engineering 400, 115497 (2022).

Summary

We haven't generated a summary for this paper yet.