Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Optimal Power Flow Value Functions with Input-Convex Neural Networks (2310.04605v1)

Published 6 Oct 2023 in cs.LG and math.OC

Abstract: The Optimal Power Flow (OPF) problem is integral to the functioning of power systems, aiming to optimize generation dispatch while adhering to technical and operational constraints. These constraints are far from straightforward; they involve intricate, non-convex considerations related to Alternating Current (AC) power flow, which are essential for the safety and practicality of electrical grids. However, solving the OPF problem for varying conditions within stringent time frames poses practical challenges. To address this, operators resort to model simplifications of varying accuracy. Unfortunately, better approximations (tight convex relaxations) are often computationally intractable. This research explores ML to learn convex approximate solutions for faster analysis in the online setting while still allowing for coupling into other convex dependent decision problems. By trading off a small amount of accuracy for substantial gains in speed, they enable the efficient exploration of vast solution spaces in these complex problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.