Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Camouflaged Object Detection: A Large-Scale Dataset and Benchmark (2310.04253v1)

Published 6 Oct 2023 in cs.CV

Abstract: In this paper, we provide a comprehensive study on a new task called collaborative camouflaged object detection (CoCOD), which aims to simultaneously detect camouflaged objects with the same properties from a group of relevant images. To this end, we meticulously construct the first large-scale dataset, termed CoCOD8K, which consists of 8,528 high-quality and elaborately selected images with object mask annotations, covering 5 superclasses and 70 subclasses. The dataset spans a wide range of natural and artificial camouflage scenes with diverse object appearances and backgrounds, making it a very challenging dataset for CoCOD. Besides, we propose the first baseline model for CoCOD, named bilateral-branch network (BBNet), which explores and aggregates co-camouflaged cues within a single image and between images within a group, respectively, for accurate camouflaged object detection in given images. This is implemented by an inter-image collaborative feature exploration (CFE) module, an intra-image object feature search (OFS) module, and a local-global refinement (LGR) module. We benchmark 18 state-of-the-art models, including 12 COD algorithms and 6 CoSOD algorithms, on the proposed CoCOD8K dataset under 5 widely used evaluation metrics. Extensive experiments demonstrate the effectiveness of the proposed method and the significantly superior performance compared to other competitors. We hope that our proposed dataset and model will boost growth in the COD community. The dataset, model, and results will be available at: https://github.com/zc199823/BBNet--CoCOD.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. D.-P. Fan, G.-P. Ji, P. Xu, M.-M. Cheng, C. Sakaridis, and L. Van Gool, “Advances in deep concealed scene understanding,” Visual Intelligence, vol. 1, no. 1, p. 16, 2023.
  2. D. Dong, J. Pei, R. Gao, T.-Z. Xiang, S. Wang, and H. Xiong, “A unified query-based paradigm for camouflaged instance segmentation,” in ACM Multimedia (ACM-MM), 2023.
  3. M. G. Nafus, J. M. Germano, J. A. Perry, B. D. Todd, A. Walsh, and R. R. Swaisgood, “Hiding in plain sight: a study on camouflage and habitat selection in a slow-moving desert herbivore,” Behavioral Ecology, vol. 26, no. 5, pp. 1389–1394, 2015.
  4. L. Li, J. Liu, S. Wang, X. Wang, and T.-Z. Xiang, “Trichomonas vaginalis segmentation in microscope images,” in International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2022.
  5. L. Li, J. Liu, F. Yu, X. Wang, and T.-Z. Xiang, “Mvdi25k: A large-scale dataset of microscopic vaginal discharge images,” BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 1, no. 1, p. 100008, 2021.
  6. J. S. Chahl and H. Liu, “Bioinspired invertebrate pest detection on standing crops,” in Bioinspiration, Biomimetics, and Bioreplication, vol. 10593, 2018, pp. 68–81.
  7. Y. Li, W. Zhai, Y. Cao, and Z.-j. Zha, “Location-free camouflage generation network,” arXiv preprint arXiv:2203.09845, 2022.
  8. T.-N. Le, T. V. Nguyen, Z. Nie, M.-T. Tran, and A. Sugimoto, “Anabranch network for camouflaged object segmentation,” Computer Vision and Image Understanding (CVIU), vol. 184, pp. 45–56, 2019.
  9. D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, and L. Shao, “Camouflaged object detection,” in Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2777–2787.
  10. Y. Lv, J. Zhang, Y. Dai, A. Li, B. Liu, N. Barnes, and D.-P. Fan, “Simultaneously localize, segment and rank the camouflaged objects,” Computer Vision and Pattern Recognition (CVPR), 2021.
  11. Y. Sun, G. Chen, T. Zhou, Y. Zhang, and N. Liu, “Context-aware cross-level fusion network for camouflaged object detection,” arXiv preprint arXiv:2105.12555, 2021.
  12. Y. Sun, S. Wang, C. Chen, and T.-Z. Xiang, “Boundary-guided camouflaged object detection,” in IJCAI, 2022, pp. 1335–1341.
  13. F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, and D.-P. Fan, “Uncertainty-guided transformer reasoning for camouflaged object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4146–4155.
  14. Y. Pang, X. Zhao, T.-Z. Xiang, L. Zhang, and H. Lu, “Zoom in and out: A mixed-scale triplet network for camouflaged object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2160–2170.
  15. Y. Zhong, B. Li, L. Tang, S. Kuang, S. Wu, and S. Ding, “Detecting camouflaged object in frequency domain,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4504–4513.
  16. X. Cheng, H. Xiong, D.-P. Fan, Y. Zhong, M. Harandi, T. Drummond, and Z. Ge, “Implicit motion handling for video camouflaged object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 864–13 873.
  17. Z. Chen, R. Gao, T.-Z. Xiang, and F. Lin, “Diffusion model for camouflaged object detection,” in European Conference on Artificial Intelligence (ECAI), 2023.
  18. D. Zhang, J. Han, C. Li, J. Wang, and X. Li, “Detection of co-salient objects by looking deep and wide,” International Journal of Computer Vision, vol. 120, no. 2, pp. 215–232, 2016.
  19. W. Li, O. Hosseini Jafari, and C. Rother, “Deep object co-segmentation,” in Asian Conference on Computer Vision.   Springer, 2018, pp. 638–653.
  20. A. Li, J. Zhang, Y. Lv, B. Liu, T. Zhang, and Y. Dai, “Uncertainty-aware joint salient object and camouflaged object detection,” arXiv preprint arXiv:2104.02628, 2021.
  21. D.-P. Fan, T. Li, Z. Lin, G.-P. Ji, D. Zhang, M.-M. Cheng, H. Fu, and J. Shen, “Re-thinking co-salient object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
  22. S. Li, D. Florencio, Y. Zhao, C. Cook, and W. Li, “Foreground detection in camouflaged scenes,” in 2017 IEEE International Conference on Image Processing.   IEEE, 2017, pp. 4247–4251.
  23. Y. Pan, Y. Chen, Q. Fu, P. Zhang, and X. Xu, “Study on the camouflaged target detection method based on 3d convexity,” Modern Applied Science, vol. 5, no. 4, p. 152, 2011.
  24. J. R. Hall, I. C. Cuthill, R. Baddeley, A. J. Shohet, and N. E. Scott-Samuel, “Camouflage, detection and identification of moving targets,” Proceedings of the Royal Society B: Biological Sciences, vol. 280, no. 1758, p. 20130064, 2013.
  25. S. Li, D. Florencio, W. Li, Y. Zhao, and C. Cook, “A fusion framework for camouflaged moving foreground detection in the wavelet domain,” IEEE Transactions on Image Processing (TIP), vol. 27, no. 8, pp. 3918–3930, 2018.
  26. J. Gallego and P. Bertolino, “Foreground object segmentation for moving camera sequences based on foreground-background probabilistic models and prior probability maps,” in IEEE International Conference on Image Processing (ICIP).   IEEE, 2014, pp. 3312–3316.
  27. H. Bi, C. Zhang, K. Wang, J. Tong, and F. Zheng, “Rethinking camouflaged object detection: Models and datasets,” IEEE Transactions on Circuits and Systems for Video Technology, 2021.
  28. K. Wang, H. Bi, Y. Zhang, C. Zhang, Z. Liu, and S. Zheng, “D22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPTc-net: A dual-branch, dual-guidance and cross-refine network for camouflaged object detection,” IEEE Transactions on Industrial Electronics, vol. 69, no. 5, pp. 5364–5374, 2021.
  29. D.-P. Fan, G.-P. Ji, M.-M. Cheng, and L. Shao, “Concealed object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
  30. M. Zhuge, X. Lu, Y. Guo, Z. Cai, and S. Chen, “Cubenet: X-shape connection for camouflaged object detection,” Pattern Recognition, vol. 127, p. 108644, 2022.
  31. H. Mei, G.-P. Ji, Z. Wei, X. Yang, X. Wei, and D.-P. Fan, “Camouflaged object segmentation with distraction mining,” Computer Vision and Pattern Recognition (CVPR), 2021.
  32. J. Ren, X. Hu, L. Zhu, X. Xu, Y. Xu, W. Wang, Z. Deng, and P.-A. Heng, “Deep texture-aware features for camouflaged object detection,” IEEE Transactions on Circuits and Systems for Video Technology, 2021.
  33. Q. Jia, S. Yao, Y. Liu, X. Fan, R. Liu, and Z. Luo, “Segment, magnify and reiterate: Detecting camouflaged objects the hard way,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4713–4722.
  34. Z. Huang, H. Dai, T.-Z. Xiang, S. Wang, H.-X. Chen, J. Qin, and H. Xiong, “Feature shrinkage pyramid for camouflaged object detection with transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5557–5566.
  35. J. Zhu, X. Zhang, S. Zhang, and J. Liu, “Inferring camouflaged objects by texture-aware interactive guidance network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 3599–3607.
  36. G.-P. Ji, D.-P. Fan, Y.-C. Chou, D. Dai, A. Liniger, and L. Van Gool, “Deep gradient learning for efficient camouflaged object detection,” arXiv preprint arXiv:2205.12853, 2022.
  37. H. Zhu, P. Li, H. Xie, X. Yan, D. Liang, D. Chen, M. Wei, and J. Qin, “I can find you! boundary-guided separated attention network for camouflaged object detection,” in AAAI, 2022.
  38. Q. Zhai, X. Li, F. Yang, C. Chen, H. Cheng, and D.-P. Fan, “Mutual graph learning for camouflaged object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12 997–13 007.
  39. G.-P. Ji, L. Zhu, M. Zhuge, and K. Fu, “Fast camouflaged object detection via edge-based reversible re-calibration network,” Pattern Recognition, vol. 123, p. 108414, 2022.
  40. J. Liu, J. Zhang, and N. Barnes, “Modeling aleatoric uncertainty for camouflaged object detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 1445–1454.
  41. Z. Wu, D. P. Paudel, D.-P. Fan, J. Wang, S. Wang, C. Demonceaux, R. Timofte, and L. Van Gool, “Source-free depth for object pop-out,” in International Conference on Computer Vision (ICCV), 2023.
  42. Z. Chen, K. Sun, X. Lin, and R. Ji, “Camodiffusion: Camouflaged object detection via conditional diffusion models,” arXiv preprint arXiv:2305.17932, 2023.
  43. P. Skurowski, H. Abdulameer, J. Baszczyk, T. Depta, A. Kornacki, and P. Kozie, “Animal camouflage analysis: Chameleon database,” in Unpublished Manuscript, 2018.
  44. Y. Liu, D. Zhang, Q. Zhang, and J. Han, “Integrating part-object relationship and contrast for camouflaged object detection,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5154–5166, 2021.
  45. P. Zheng, J. Qin, S. Wang, T.-Z. Xiang, and H. Xiong, “Memory-aided contrastive consensus learning for co-salient object detection,” in AAAI Conference on Artificial Intelligence (AAAI), 2023, pp. 3687–3695.
  46. Z. Liu, W. Zou, L. Li, L. Shen, and O. Le Meur, “Co-saliency detection based on hierarchical segmentation,” IEEE Signal Processing Letters, vol. 21, no. 1, pp. 88–92, 2013.
  47. X. Cao, Z. Tao, B. Zhang, H. Fu, and W. Feng, “Self-adaptively weighted co-saliency detection via rank constraint,” IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 4175–4186, 2014.
  48. J. Han, G. Cheng, Z. Li, and D. Zhang, “A unified metric learning-based framework for co-saliency detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 2473–2483, 2017.
  49. Y. Li, K. Fu, Z. Liu, and J. Yang, “Efficient saliency-model-guided visual co-saliency detection,” IEEE Signal Processing Letters, vol. 22, no. 5, pp. 588–592, 2014.
  50. X. Cao, Y. Cheng, Z. Tao, and H. Fu, “Co-saliency detection via base reconstruction,” in Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 997–1000.
  51. K.-Y. Chang, T.-L. Liu, and S.-H. Lai, “From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model,” in CVPR 2011.   IEEE, 2011, pp. 2129–2136.
  52. H. Fu, X. Cao, and Z. Tu, “Cluster-based co-saliency detection,” IEEE Transactions on Image Processing, vol. 22, no. 10, pp. 3766–3778, 2013.
  53. Y. Ge, Q. Zhang, T.-Z. Xiang, C. Zhang, and H. Bi, “TCNet: Co-salient object detection via parallel interaction of transformers and cnns,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 6, pp. 2600 – 2615, 2022.
  54. Y. Ge, Q. Zhang, T.-Z. Xiang, C. Zhang, J. Zhang, and H. Bi, “GSNNet: Group semantic-guided neighbor interaction network for co-salient object detection,” Computer Vision and Image Understanding, vol. 227, p. 103611, 2023.
  55. Z. Zhang, W. Jin, J. Xu, and M.-M. Cheng, “Gradient-induced co-saliency detection,” in European Conference on Computer Vision.   Springer, 2020, pp. 455–472.
  56. W.-D. Jin, J. Xu, M.-M. Cheng, Y. Zhang, and W. Guo, “Icnet: Intra-saliency correlation network for co-saliency detection,” Advances in Neural Information Processing Systems, vol. 33, pp. 18 749–18 759, 2020.
  57. N. Zhang, J. Han, N. Liu, and L. Shao, “Summarize and search: Learning consensus-aware dynamic convolution for co-saliency detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4167–4176.
  58. Q. Fan, D.-P. Fan, H. Fu, C.-K. Tang, L. Shao, and Y.-W. Tai, “Group collaborative learning for co-salient object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12 288–12 298.
  59. S. Yu, J. Xiao, B. Zhang, and E. G. Lim, “Democracy does matter: Comprehensive feature mining for co-salient object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 979–988.
  60. D.-P. Fan, J. Zhang, G. Xu, M.-M. Cheng, and L. Shao, “Salient objects in clutter,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 2344–2366, 2022.
  61. Z. Huang, T.-Z. Xiang, H.-X. Chen, and H. Dai, “Scribble-based boundary-aware network for weakly supervised salient object detection in remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 191, pp. 290–301, 2022.
  62. P. Zhang, W. Liu, Y. Zeng, Y. Lei, and H. Lu, “Looking for the detail and context devils: High-resolution salient object detection,” IEEE Transactions on Image Processing, vol. 30, pp. 3204–3216, 2021.
  63. Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of salient object segmentation,” in IEEE conference on computer vision and pattern recognition, 2014, pp. 280–287.
  64. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  65. J. Wei, S. Wang, and Q. Huang, “F33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTnet: fusion, feedback and focus for salient object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 321–12 328.
  66. T. Chen, J. Xiao, X. Hu, G. Zhang, and S. Wang, “Boundary-guided network for camouflaged object detection,” Knowledge-Based Systems, vol. 248, p. 108901, 2022.
  67. S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 2, pp. 652–662, 2019.
  68. M.-M. Cheng, J. Warrell, W.-Y. Lin, S. Zheng, V. Vineet, and N. Crook, “Efficient salient region detection with soft image abstraction,” in Proceedings of the IEEE International Conference on Computer vision, 2013, pp. 1529–1536.
  69. D. Fan, M. Cheng, Y. Liu, T. Li, and A. Borji, “Structure-measure: A new way to evaluate foreground maps,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4558–4567.
  70. R. Achanta, S. S. Hemami, F. J. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in IEEE conference on computer vision and pattern recognition, 2009, pp. 1597–1604.
  71. D. Fan, C. Gong, Y. Cao, B. Ren, M. Cheng, and A. Borji, “Enhanced-alignment measure for binary foreground map evaluation,” arXiv preprint arXiv:1805.10421, 2018.
  72. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations (ICLR), 2015.
  73. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
Citations (12)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com