Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov chain entropy games and the geometry of their Nash equilibria (2310.04115v2)

Published 6 Oct 2023 in math.PR, cs.IT, math.IT, math.OC, and stat.CO

Abstract: Consider the following two-person mixed strategy game of a probabilist against Nature with respect to the parameters $(f, \mathcal{B},\pi)$, where $f$ is a convex function satisfying certain regularity conditions, $\mathcal{B}$ is either the set ${L_i}_{i=1}n$ or its convex hull with each $L_i$ being a Markov infinitesimal generator on a finite state space $\mathcal{X}$ and $\pi$ is a given positive discrete distribution on $\mathcal{X}$. The probabilist chooses a prior measure $\mu$ within the set of probability measures on $\mathcal{B}$ denoted by $\mathcal{P}(\mathcal{B})$ and picks a $L \in \mathcal{B}$ at random according to $\mu$, whereas Nature follows a pure strategy to select $M \in \mathcal{L}(\pi)$, the set of $\pi$-reversible Markov generators on $\mathcal{X}$. Nature pays an amount $D_f(M||L)$, the $f$-divergence from $L$ to $M$, to the probabilist. We prove that a mixed strategy Nash equilibrium always exists, and establish a minimax result on the expected payoff of the game. This also contrasts with the pure strategy version of the game where we show a Nash equilibrium may not exist. To find approximately a mixed strategy Nash equilibrium, we propose and develop a simple projected subgradient algorithm that provably converges with a rate of $\mathcal{O}(1/\sqrt{t})$, where $t$ is the number of iterations. In addition, we elucidate the relationships of Nash equilibrium with other seemingly disparate notions such as weighted information centroid, Chebyshev center and Bayes risk. This article generalizes the two-person game of a statistician against Nature developed in the literature, and highlights the powerful interplay and synergy between modern Markov chains theory and geometry, information theory, game theory, optimization and mathematical statistics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. S.-i. Amari. Information geometry and its applications, volume 194 of Applied Mathematical Sciences. Springer, [Tokyo], 2016.
  2. A. Beck. First-order methods in optimization, volume 25 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2017.
  3. J. Bierkens. Non-reversible Metropolis-Hastings. Stat. Comput., 26(6):1213–1228, 2016.
  4. L. J. Billera and P. Diaconis. A geometric interpretation of the Metropolis-Hastings algorithm. Statist. Sci., 16(4):335–339, 2001.
  5. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, 2004.
  6. C. Candan. Chebyshev center computation on probability simplex with α𝛼\alphaitalic_α-divergence measure. IEEE Signal Processing Letters, 27:1515–1519, 2020.
  7. M. C. Choi. Metropolis-Hastings reversiblizations of non-reversible Markov chains. Stochastic Processes and their Applications, 130(2):1041 – 1073, 2020.
  8. On hitting time, mixing time and geometric interpretations of Metropolis-Hastings reversiblizations. J. Theoret. Probab., 33(2):1144–1163, 2020.
  9. M. C. Choi and G. Wolfer. Systematic approaches to generate reversiblizations of Markov chains. IEEE Transactions on Information Theory, 2023.
  10. L. Condat. Fast projection onto the simplex and the l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ball. Math. Program., 158(1-2):575–585, 2016.
  11. I. Csiszár. A class of measures of informativity of observation channels. Period. Math. Hungar., 2:191–213, 1972.
  12. L. D. Davisson and A. Leon-Garcia. A source matching approach to finding minimax codes. IEEE Trans. Inform. Theory, 26(2):166–174, 1980.
  13. P. Diaconis and L. Miclo. On characterizations of Metropolis type algorithms in continuous time. ALEA Lat. Am. J. Probab. Math. Stat., 6:199–238, 2009.
  14. Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab., 10(3):726–752, 2000.
  15. A minimax Chebyshev estimator for bounded error estimation. IEEE Trans. Signal Process., 56(4):1388–1397, 2008.
  16. J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process. Ann. Appl. Probab., 1(1):62–87, 1991.
  17. A minimax result for f𝑓fitalic_f-divergences. In From stochastic calculus to mathematical finance, pages 287–294. Springer, Berlin, 2006.
  18. P. Gustafson. A guided walk metropolis algorithm. Statistics and computing, 8(4):357–364, 1998.
  19. D. Haussler. A general minimax result for relative entropy. IEEE Trans. Inform. Theory, 43(4):1276–1280, 1997.
  20. D. Haussler and M. Opper. Mutual information, metric entropy and cumulative relative entropy risk. Ann. Statist., 25(6):2451–2492, 1997.
  21. Matrix analysis. Cambridge University Press, Cambridge, second edition, 2013.
  22. Accelerating Gaussian diffusions. Ann. Appl. Probab., 3(3):897–913, 1993.
  23. Accelerating diffusions. Ann. Appl. Probab., 15(2):1433–1444, 2005.
  24. S. Jansen and N. Kurt. On the notion(s) of duality for Markov processes. Probab. Surv., 11:59–120, 2014.
  25. K. Kamatani and X. Song. Non-reversible guided Metropolis kernel. J. Appl. Probab., 60(3):955–981, 2023.
  26. A. R. Karlin and Y. Peres. Game theory, alive. American Mathematical Society, Providence, RI, 2017.
  27. J. Keilson. Markov chain models—rarity and exponentiality, volume 28 of Applied Mathematical Sciences. Springer-Verlag, New York-Berlin, 1979.
  28. Game theory. Cambridge University Press, Cambridge, second edition, 2020.
  29. L. Miclo. Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies. In Séminaire de Probabilités, XXXI, volume 1655 of Lecture Notes in Math., pages 136–167. Springer, Berlin, 1997.
  30. F. Nielsen. The many faces of information geometry. Notices Amer. Math. Soc., 69(1):36–45, 2022.
  31. D. Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral methods. Electron. J. Probab., 20:no. 79, 1–32, 2015.
  32. L. Rey-Bellet and K. Spiliopoulos. Improving the convergence of reversible samplers. J. Stat. Phys., 164(3):472–494, 2016.
  33. J. S. Rosenthal and P. Rosenthal. Spectral bounds for certain two-factor non-reversible MCMC algorithms. Electron. Commun. Probab., 20:no. 91, 10, 2015.
  34. I. Sason and S. Verdú. f𝑓fitalic_f-divergence inequalities. IEEE Trans. Inform. Theory, 62(11):5973–6006, 2016.
  35. E. Schrödinger. über die umkehrung der naturgesetze. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, 8(9):144–153, 1931.
  36. Uniformization: Basics, extensions and applications. Perform. Evaluation, 118:8–32, 2018.
  37. T. van Erven and P. Harremoës. Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inform. Theory, 60(7):3797–3820, 2014.
  38. H. Weyl. Symmetry. Princeton University Press, Princeton, NJ, 1952.
  39. G. Wolfer and S. Watanabe. Information geometry of reversible Markov chains. Inf. Geom., 4(2):393–433, 2021.

Summary

We haven't generated a summary for this paper yet.