Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deeply Supervised Semantic Segmentation Method Based on GAN (2310.04081v1)

Published 6 Oct 2023 in cs.CV, cs.AI, and cs.CE

Abstract: In recent years, the field of intelligent transportation has witnessed rapid advancements, driven by the increasing demand for automation and efficiency in transportation systems. Traffic safety, one of the tasks integral to intelligent transport systems, requires accurately identifying and locating various road elements, such as road cracks, lanes, and traffic signs. Semantic segmentation plays a pivotal role in achieving this task, as it enables the partition of images into meaningful regions with accurate boundaries. In this study, we propose an improved semantic segmentation model that combines the strengths of adversarial learning with state-of-the-art semantic segmentation techniques. The proposed model integrates a generative adversarial network (GAN) framework into the traditional semantic segmentation model, enhancing the model's performance in capturing complex and subtle features in transportation images. The effectiveness of our approach is demonstrated by a significant boost in performance on the road crack dataset compared to the existing methods, \textit{i.e.,} SEGAN. This improvement can be attributed to the synergistic effect of adversarial learning and semantic segmentation, which leads to a more refined and accurate representation of road structures and conditions. The enhanced model not only contributes to better detection of road cracks but also to a wide range of applications in intelligent transportation, such as traffic sign recognition, vehicle detection, and lane segmentation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. L. Figueiredo, I. Jesus, J. T. Machado, J. R. Ferreira, and J. M. De Carvalho, “Towards the development of intelligent transportation systems,” ITSC 2001. 2001 IEEE intelligent transportation systems. Proceedings (Cat. No. 01TH8585), pp. 1206–1211, 2001.
  2. P. Papadimitratos, A. De La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation,” IEEE communications magazine, vol. 47, no. 11, pp. 84–95, 2009.
  3. C. Chen, K. Li, S. G. Teo, X. Zou, K. Li, and Z. Zeng, “Citywide traffic flow prediction based on multiple gated spatio-temporal convolutional neural networks,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no. 4, pp. 1–23, 2020.
  4. G. Y. Oztel, “Vision-based road segmentation for intelligent vehicles using deep convolutional neural networks,” in 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA).   IEEE, 2021, pp. 1–5.
  5. S. Wan, X. Xu, T. Wang, and Z. Gu, “An intelligent video analysis method for abnormal event detection in intelligent transportation systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4487–4495, 2020.
  6. S. Kaushik, A. Raman, and K. R. Rao, “Leveraging computer vision for emergency vehicle detection-implementation and analysis,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT).   IEEE, 2020, pp. 1–6.
  7. Z. Othman, A. Abdullah, F. Kasmin, and S. S. S. Ahmad, “Road crack detection using adaptive multi resolution thresholding techniques,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 17, no. 4, pp. 1874–1881, 2019.
  8. R. Singh, R. Sharma, S. V. Akram, A. Gehlot, D. Buddhi, P. K. Malik, and R. Arya, “Highway 4.0: Digitalization of highways for vulnerable road safety development with intelligent iot sensors and machine learning,” Safety science, vol. 143, p. 105407, 2021.
  9. F. Arena, G. Pau, and A. Severino, “A review on ieee 802.11 p for intelligent transportation systems,” Journal of Sensor and Actuator Networks, vol. 9, no. 2, p. 22, 2020.
  10. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660.
  11. Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x-transformed points,” Advances in neural information processing systems, vol. 31, 2018.
  12. C. Chen, K. Li, W. Wei, J. T. Zhou, and Z. Zeng, “Hierarchical graph neural networks for few-shot learning,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 1, pp. 240–252, 2021.
  13. A. A. Kashyap, S. Raviraj, A. Devarakonda, S. R. Nayak K, S. KV, and S. J. Bhat, “Traffic flow prediction models–a review of deep learning techniques,” Cogent Engineering, vol. 9, no. 1, p. 2010510, 2022.
  14. G. B. Coleman and H. C. Andrews, “Image segmentation by clustering,” Proceedings of the IEEE, vol. 67, no. 5, pp. 773–785, 1979.
  15. D. Kaur and Y. Kaur, “Various image segmentation techniques: a review,” International Journal of Computer Science and Mobile Computing, vol. 3, no. 5, pp. 809–814, 2014.
  16. F. Garcia-Lamont, J. Cervantes, A. López, and L. Rodriguez, “Segmentation of images by color features: A survey,” Neurocomputing, vol. 292, pp. 1–27, 2018.
  17. J. Horvath, “Image segmentation using fuzzy c-means,” in Symposium on Applied Machine Intelligence, 2006.
  18. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp. 85–117, 2015.
  19. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
  20. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  21. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
  22. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic image segmentation with deep convolutional nets and fully connected crfs,” arXiv preprint arXiv:1412.7062, 2014.
  23. Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for domain adaptation of semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 6936–6945.
  24. R. Azad, M. Asadi-Aghbolaghi, M. Fathy, and S. Escalera, “Attention deeplabv3+: Multi-level context attention mechanism for skin lesion segmentation,” in Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16.   Springer, 2020, pp. 251–266.
  25. N. Souly, C. Spampinato, and M. Shah, “Semi supervised semantic segmentation using generative adversarial network,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 5688–5696.
  26. L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, 2017.
  27. F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” arXiv preprint arXiv:1511.07122, 2015.
  28. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904–1916, 2015.
  29. Y. Wang, B. Liang, M. Ding, and J. Li, “Dense semantic labeling with atrous spatial pyramid pooling and decoder for high-resolution remote sensing imagery,” Remote Sensing, vol. 11, no. 1, p. 20, 2018.
  30. Z. Huang, X. Wang, J. Wang, W. Liu, and J. Wang, “Weakly-supervised semantic segmentation network with deep seeded region growing,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7014–7023.
  31. T. Kalluri, G. Varma, M. Chandraker, and C. Jawahar, “Universal semi-supervised semantic segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5259–5270.
  32. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  33. Y. Liu, S. Mao, X. Mei, T. Yang, and X. Zhao, “Sensitivity of adversarial perturbation in fast gradient sign method,” in 2019 IEEE symposium series on computational intelligence (SSCI).   IEEE, 2019, pp. 433–436.
  34. Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with momentum,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9185–9193.
  35. Y. Balaji, R. Chellappa, and S. Feizi, “Robust optimal transport with applications in generative modeling and domain adaptation,” Advances in Neural Information Processing Systems, vol. 33, pp. 12 934–12 944, 2020.
  36. J. Bao, L. Li, and F. Redoloza, “Coupling ensemble smoother and deep learning with generative adversarial networks to deal with non-gaussianity in flow and transport data assimilation,” Journal of Hydrology, vol. 590, p. 125443, 2020.
  37. T. Zhao, Y. Wang, G. Li, L. Kong, Y. Chen, Y. Wang, N. Xie, and J. Yang, “A model-based reinforcement learning method based on conditional generative adversarial networks,” Pattern Recognition Letters, vol. 152, pp. 18–25, 2021.
  38. E. Soleimani and E. Nazerfard, “Cross-subject transfer learning in human activity recognition systems using generative adversarial networks,” Neurocomputing, vol. 426, pp. 26–34, 2021.
  39. Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. Chen, “Automatic road crack detection using random structured forests,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 12, pp. 3434–3445, 2016.
  40. L. Cui, Z. Qi, Z. Chen, F. Meng, and Y. Shi, “Pavement distress detection using random decision forests,” in International Conference on Data Science.   Springer, 2015, pp. 95–102.
  41. Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, “Deepcrack: A deep hierarchical feature learning architecture for crack segmentation,” Neurocomputing, vol. 338, pp. 139–153, 2019.
  42. X. Zhang, X. Zhu, N. Zhang, P. Li, L. Wang et al., “Seggan: Semantic segmentation with generative adversarial network,” in 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM).   IEEE, 2018, pp. 1–5.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wei Zhao (309 papers)
  2. Qiyu Wei (6 papers)
  3. Zeng Zeng (40 papers)