Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fishnets: Information-Optimal, Scalable Aggregation for Sets and Graphs (2310.03812v2)

Published 5 Oct 2023 in cs.LG and stat.ML

Abstract: Set-based learning is an essential component of modern deep learning and network science. Graph Neural Networks (GNNs) and their edge-free counterparts Deepsets have proven remarkably useful on ragged and topologically challenging datasets. The key to learning informative embeddings for set members is a specified aggregation function, usually a sum, max, or mean. We propose Fishnets, an aggregation strategy for learning information-optimal embeddings for sets of data for both Bayesian inference and graph aggregation. We demonstrate that i) Fishnets neural summaries can be scaled optimally to an arbitrary number of data objects, ii) Fishnets aggregations are robust to changes in data distribution, unlike standard deepsets, iii) Fishnets saturate Bayesian information content and extend to regimes where MCMC techniques fail and iv) Fishnets can be used as a drop-in aggregation scheme within GNNs. We show that by adopting a Fishnets aggregation scheme for message passing, GNNs can achieve state-of-the-art performance versus architecture size on ogbn-protein data over existing benchmarks with a fraction of learnable parameters and faster training time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from tensorflow.org.
  2. Generalized massive optimal data compression. Monthly Notices of the Royal Astronomical Society: Letters, 476(1):L60–L64, feb 2018. doi: 10.1093/mnrasl/sly029. URL https://doi.org/10.1093%2Fmnrasl%2Fsly029.
  3. Fast likelihood-free cosmology with neural density estimators and active learning. Monthly Notices of the Royal Astronomical Society, Jul 2019. ISSN 1365-2966. doi: 10.1093/mnras/stz1960. URL http://dx.doi.org/10.1093/mnras/stz1960.
  4. Amari, S.-i. Information geometry. Japanese Journal of Mathematics, 16(1):1–48, January 2021. ISSN 1861-3624. doi: 10.1007/s11537-020-1920-5. URL https://doi.org/10.1007/s11537-020-1920-5.
  5. Relational inductive biases, deep learning, and graph networks, 2018.
  6. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.
  7. Automatic physical inference with information maximizing neural networks. Physical Review D, 97(8), apr 2018. doi: 10.1103/physrevd.97.083004. URL https://doi.org/10.1103%2Fphysrevd.97.083004.
  8. Fast and accurate deep network learning by exponential linear units (elus), 2015. URL https://arxiv.org/abs/1511.07289.
  9. Principal neighbourhood aggregation for graph nets. CoRR, abs/2004.05718, 2020. URL https://arxiv.org/abs/2004.05718.
  10. How to estimate fisher information matrices from simulations, 2023.
  11. Cramér, H. Mathematical methods of statistics, by Harald Cramer, .. The University Press, 1946.
  12. The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48):30055–30062, may 2020. doi: 10.1073/pnas.1912789117. URL https://doi.org/10.1073%2Fpnas.1912789117.
  13. Bayesian methods for censored categorical data. Journal of the American Statistical Association, 82(399):773–781, 1987. ISSN 01621459. URL http://www.jstor.org/stable/2288786.
  14. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.
  15. Inductive representation learning on large graphs. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.
  16. Minimizing the expected posterior entropy yields optimal summary statistics, 2022. URL https://arxiv.org/abs/2206.02340.
  17. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687, 2020.
  18. Ogb-lsc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.
  19. Solving high-dimensional parameter inference: marginal posterior densities & amp; moment networks, 2020. URL https://arxiv.org/abs/2011.05991.
  20. Semi-supervised classification with graph convolutional networks, 2017.
  21. Deepergcn: All you need to train deeper gcns, 2020.
  22. Lossless, scalable implicit likelihood inference for cosmological fields. Journal of Cosmology and Astroparticle Physics, 2021(11):049, nov 2021. doi: 10.1088/1475-7516/2021/11/049. URL https://doi.org/10.1088%2F1475-7516%2F2021%2F11%2F049.
  23. The cosmic graph: Optimal information extraction from large-scale structure using catalogues. The Open Journal of Astrophysics, 5(1), dec 2022. doi: 10.21105/astro.2207.05202. URL https://doi.org/10.21105%2Fastro.2207.05202.
  24. Massey Jr., F. J. The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253):68–78, 1951. doi: 10.1080/01621459.1951.10500769. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.1951.10500769.
  25. Truncated marginal neural ratio estimation. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.), Advances in Neural Information Processing Systems, volume 34, pp.  129–143. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/01632f7b7a127233fa1188bd6c2e42e1-Paper.pdf.
  26. Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows. In Chaudhuri, K. and Sugiyama, M. (eds.), Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pp.  837–848. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/v89/papamakarios19a.html.
  27. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.  8024–8035. Curran Associates, Inc., 2019.
  28. Composable effects for flexible and accelerated probabilistic programming in numpyro. arXiv preprint arXiv:1912.11554, 2019.
  29. On Bayesian modeling of censored data in JAGS. BMC Bioinformatics, 23(1):102, March 2022. ISSN 1471-2105. doi: 10.1186/s12859-021-04496-8. URL https://doi.org/10.1186/s12859-021-04496-8.
  30. Searching for activation functions, 2017.
  31. Vaart, A. W. v. d. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998. doi: 10.1017/CBO9780511802256.
  32. Graph attention networks, 2018.
  33. On the limitations of representing functions on sets, 2019.
  34. How powerful are graph neural networks?, 2019.
  35. Deep sets, 2018.
  36. Graph neural networks: A review of methods and applications. AI Open, 1:57–81, 2020. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.2021.01.001. URL https://www.sciencedirect.com/science/article/pii/S2666651021000012.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com