Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GoLLIE: Annotation Guidelines improve Zero-Shot Information-Extraction (2310.03668v5)

Published 5 Oct 2023 in cs.CL

Abstract: LLMs combined with instruction tuning have made significant progress when generalizing to unseen tasks. However, they have been less successful in Information Extraction (IE), lagging behind task-specific models. Typically, IE tasks are characterized by complex annotation guidelines that describe the task and give examples to humans. Previous attempts to leverage such information have failed, even with the largest models, as they are not able to follow the guidelines out of the box. In this paper, we propose GoLLIE (Guideline-following LLM for IE), a model able to improve zero-shot results on unseen IE tasks by virtue of being fine-tuned to comply with annotation guidelines. Comprehensive evaluation empirically demonstrates that GoLLIE is able to generalize to and follow unseen guidelines, outperforming previous attempts at zero-shot information extraction. The ablation study shows that detailed guidelines are key for good results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. Promptner: Prompting for named entity recognition, 2023.
  2. GPT-NeoX-20B: An open-source autoregressive language model. In Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models, pp.  95–136, virtual+Dublin, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.bigscience-1.9. URL https://aclanthology.org/2022.bigscience-1.9.
  3. Prompting language models for linguistic structure. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp.  6649–6663. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.367. URL https://doi.org/10.18653/v1/2023.acl-long.367.
  4. Language models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.
  5. Crossroads, buildings and neighborhoods: A dataset for fine-grained location recognition. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.  3329–3339, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.243. URL https://aclanthology.org/2022.naacl-main.243.
  6. An empirical study on multiple information sources for zero-shot fine-grained entity typing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.  2668–2678, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.210. URL https://aclanthology.org/2021.emnlp-main.210.
  7. Language models are few-shot learners for prognostic prediction. CoRR, abs/2302.12692, 2023. doi: 10.48550/arXiv.2302.12692. URL https://doi.org/10.48550/arXiv.2302.12692.
  8. Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311. URL https://doi.org/10.48550/arXiv.2204.02311.
  9. Scaling instruction-finetuned language models. CoRR, abs/2210.11416, 2022. doi: 10.48550/arXiv.2210.11416. URL https://doi.org/10.48550/arXiv.2210.11416.
  10. Unsupervised cross-lingual representation learning at scale. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pp.  8440–8451. Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.747. URL https://doi.org/10.18653/v1/2020.acl-main.747.
  11. Broad Twitter corpus: A diverse named entity recognition resource. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp.  1169–1179, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee. URL https://aclanthology.org/C16-1111.
  12. Results of the WNUT2017 shared task on novel and emerging entity recognition. In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp.  140–147, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4418. URL https://aclanthology.org/W17-4418.
  13. Qlora: Efficient finetuning of quantized llms. CoRR, abs/2305.14314, 2023. doi: 10.48550/arXiv.2305.14314. URL https://doi.org/10.48550/arXiv.2305.14314.
  14. Documenting large webtext corpora: A case study on the colossal clean crawled corpus. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.  1286–1305, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.98. URL https://aclanthology.org/2021.emnlp-main.98.
  15. Multi-sentence argument linking. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp.  8057–8077, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.718. URL https://aclanthology.org/2020.acl-main.718.
  16. Overview of the DIANN task: Disability annotation task. In Paolo Rosso, Julio Gonzalo, Raquel Martínez, Soto Montalvo, and Jorge Carrillo de Albornoz (eds.), Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages (IberEval 2018) co-located with 34th Conference of the Spanish Society for Natural Language Processing (SEPLN 2018), Sevilla, Spain, September 18th, 2018, volume 2150 of CEUR Workshop Proceedings, pp.  1–14. CEUR-WS.org, 2018. URL https://ceur-ws.org/Vol-2150/overview-diann-task.pdf.
  17. Semeval-2023 task 2: Fine-grained multilingual named entity recognition (multiconer 2). In Atul Kr. Ojha, A. Seza Dogruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, and Elisa Sartori (eds.), Proceedings of the The 17th International Workshop on Semantic Evaluation, SemEval@ACL 2023, Toronto, Canada, 13-14 July 2023, pp.  2247–2265. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.semeval-1.310. URL https://doi.org/10.18653/v1/2023.semeval-1.310.
  18. Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=sE7-XhLxHA.
  19. Lora: Low-rank adaptation of large language models. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.
  20. An improved corpus of disease mentions in PubMed citations. In BioNLP: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, pp.  91–99, Montréal, Canada, June 2012. Association for Computational Linguistics. URL https://aclanthology.org/W12-2411.
  21. Biomedical named entity recognition at scale. In Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani (eds.), Pattern Recognition. ICPR International Workshops and Challenges, pp.  635–646, Cham, 2021. Springer International Publishing. ISBN 978-3-030-68763-2.
  22. ”fabner”: information extraction from manufacturing process science domain literature using named entity recognition. J. Intell. Manuf., 33(8):2393–2407, 2022. doi: 10.1007/s10845-021-01807-x. URL https://doi.org/10.1007/s10845-021-01807-x.
  23. Zero-shot relation extraction via reading comprehension. In Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pp.  333–342, Vancouver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.org/K17-1034.
  24. CodeIE: Large code generation models are better few-shot information extractors. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  15339–15353, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.855. URL https://aclanthology.org/2023.acl-long.855.
  25. Document-level event argument extraction by conditional generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.  894–908, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.69. URL https://aclanthology.org/2021.naacl-main.69.
  26. Fine-grained entity recognition. In Jörg Hoffmann and Bart Selman (eds.), Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, pp.  94–100. AAAI Press, 2012. doi: 10.1609/AAAI.V26I1.8122. URL https://doi.org/10.1609/aaai.v26i1.8122.
  27. Asgard: A portable architecture for multilingual dialogue systems. In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pp.  8386–8390. IEEE, 2013. doi: 10.1109/ICASSP.2013.6639301. URL https://doi.org/10.1109/ICASSP.2013.6639301.
  28. Crossner: Evaluating cross-domain named entity recognition. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp.  13452–13460. AAAI Press, 2021a. URL https://ojs.aaai.org/index.php/AAAI/article/view/17587.
  29. Crossner: Evaluating cross-domain named entity recognition. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp.  13452–13460. AAAI Press, 2021b. doi: 10.1609/aaai.v35i15.17587. URL https://doi.org/10.1609/aaai.v35i15.17587.
  30. Universal information extraction as unified semantic matching. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp.  13318–13326. AAAI Press, 2023. doi: 10.1609/aaai.v37i11.26563. URL https://doi.org/10.1609/aaai.v37i11.26563.
  31. Unified structure generation for universal information extraction. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp.  5755–5772. Association for Computational Linguistics, 2022a. doi: 10.18653/v1/2022.acl-long.395. URL https://doi.org/10.18653/v1/2022.acl-long.395.
  32. Unified structure generation for universal information extraction. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  5755–5772, Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.395. URL https://aclanthology.org/2022.acl-long.395.
  33. Data contamination: From memorization to exploitation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.  157–165, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.18. URL https://aclanthology.org/2022.acl-short.18.
  34. The E3C project: European clinical case corpus. In Jon Alkorta, Itziar Gonzalez-Dios, Aitziber Atutxa, Koldo Gojenola, Eugenio Martínez-Cámara, Álvaro Rodrigo, and Paloma Martínez (eds.), Proceedings of the Annual Conference of the Spanish Association for Natural Language Processing: Projects and Demonstrations (SEPLN-PD 2021) co-located with the Conference of the Spanish Society for Natural Language Processing (SEPLN 2021), Málaga, Spain, September, 2021, volume 2968 of CEUR Workshop Proceedings, pp.  17–20. CEUR-WS.org, 2021. URL https://ceur-ws.org/Vol-2968/paper5.pdf.
  35. Recent advances in natural language processing via large pre-trained language models: A survey. ACM Comput. Surv., 56(2), sep 2023. ISSN 0360-0300. doi: 10.1145/3605943. URL https://doi.org/10.1145/3605943.
  36. Crosslingual generalization through multitask finetuning. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp.  15991–16111. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.acl-long.891. URL https://doi.org/10.18653/v1/2023.acl-long.891.
  37. Description-based zero-shot fine-grained entity typing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.  807–814, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1087. URL https://aclanthology.org/N19-1087.
  38. The refinedweb dataset for falcon LLM: outperforming curated corpora with web data, and web data only. CoRR, abs/2306.01116, 2023. doi: 10.48550/arXiv.2306.01116. URL https://doi.org/10.48550/arXiv.2306.01116.
  39. Towards robust linguistic analysis using OntoNotes. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pp.  143–152, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL https://aclanthology.org/W13-3516.
  40. Train short, test long: Attention with linear biases enables input length extrapolation. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=R8sQPpGCv0.
  41. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
  42. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/papers/v21/20-074.html.
  43. Design challenges and misconceptions in named entity recognition. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009), pp.  147–155, Boulder, Colorado, June 2009. Association for Computational Linguistics. URL https://aclanthology.org/W09-1119.
  44. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi: 10.48550/arXiv.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.
  45. Label verbalization and entailment for effective zero and few-shot relation extraction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.  1199–1212, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.92. URL https://aclanthology.org/2021.emnlp-main.92.
  46. Textual entailment for event argument extraction: Zero- and few-shot with multi-source learning. In Findings of the Association for Computational Linguistics: NAACL 2022, pp.  2439–2455, Seattle, United States, July 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.187. URL https://aclanthology.org/2022.findings-naacl.187.
  47. ZS4IE: A toolkit for zero-shot information extraction with simple verbalizations. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations, pp.  27–38, Hybrid: Seattle, Washington + Online, July 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-demo.4. URL https://aclanthology.org/2022.naacl-demo.4.
  48. Did chatgpt cheat on your test?, Jun 2023a. URL https://hitz-zentroa.github.io/lm-contamination/blog/.
  49. Nlp evaluation in trouble: On the need to measure llm data contamination for each benchmark, 2023b. URL https://arxiv.org/abs/2310.18018.
  50. Casie: Extracting cybersecurity event information from text. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8749–8757, Apr. 2020. doi: 10.1609/aaai.v34i05.6401. URL https://ojs.aaai.org/index.php/AAAI/article/view/6401.
  51. How many data points is a prompt worth? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pp.  2627–2636. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.naacl-main.208. URL https://doi.org/10.18653/v1/2021.naacl-main.208.
  52. Exploiting cloze-questions for few-shot text classification and natural language inference. In Paola Merlo, Jörg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, EACL 2021, Online, April 19 - 23, 2021, pp.  255–269. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.eacl-main.20. URL https://doi.org/10.18653/v1/2021.eacl-main.20.
  53. Large language models encode clinical knowledge. CoRR, abs/2212.13138, 2022. doi: 10.48550/ARXIV.2212.13138. URL https://doi.org/10.48550/arXiv.2212.13138.
  54. Large language models encode clinical knowledge. Nature, pp.  1–9, 2023.
  55. DAMO-NLP at semeval-2023 task 2: A unified retrieval-augmented system for multilingual named entity recognition. In Atul Kr. Ojha, A. Seza Dogruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, and Elisa Sartori (eds.), Proceedings of the The 17th International Workshop on Semantic Evaluation, SemEval@ACL 2023, Toronto, Canada, 13-14 July 2023, pp.  2014–2028. Association for Computational Linguistics, 2023. doi: 10.18653/v1/2023.semeval-1.277. URL https://doi.org/10.18653/v1/2023.semeval-1.277.
  56. MultiNERD: A multilingual, multi-genre and fine-grained dataset for named entity recognition (and disambiguation). In Findings of the Association for Computational Linguistics: NAACL 2022, pp.  801–812, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.60. URL https://aclanthology.org/2022.findings-naacl.60.
  57. Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp.  142–147, 2003. URL https://aclanthology.org/W03-0419.
  58. Llama: Open and efficient foundation language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/arXiv.2302.13971. URL https://doi.org/10.48550/arXiv.2302.13971.
  59. Llama 2: Open foundation and fine-tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/arXiv.2307.09288. URL https://doi.org/10.48550/arXiv.2307.09288.
  60. Ace 2005 multilingual training corpus. Linguistic Data Consortium, Philadelphia, 57:45, 2006. URL https://catalog.ldc.upenn.edu/LDC2006T06.
  61. Gpt-j-6b: A 6 billion parameter autoregressive language model, 2021.
  62. Instructuie: Multi-task instruction tuning for unified information extraction. CoRR, abs/2304.08085, 2023a. doi: 10.48550/arXiv.2304.08085. URL https://doi.org/10.48550/arXiv.2304.08085.
  63. Code4Struct: Code generation for few-shot event structure prediction. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  3640–3663, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.202. URL https://aclanthology.org/2023.acl-long.202.
  64. Improving named entity recognition by external context retrieving and cooperative learning. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.  1800–1812, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.142. URL https://aclanthology.org/2021.acl-long.142.
  65. Super-naturalinstructions: Generalization via declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp.  5085–5109. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.emnlp-main.340. URL https://doi.org/10.18653/v1/2022.emnlp-main.340.
  66. Assessing the state of the art in biomedical relation extraction: overview of the biocreative v chemical-disease relation (cdr) task. Database, 2016, 2016.
  67. A hybrid bi-lstm-crf model to recognition of disabilities from biomedical texts. In Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages, 2018. URL https://ceur-ws.org/Vol-2150/DIANN_paper5.pdf.
  68. Promptner: A prompting method for few-shot named entity recognition via k nearest neighbor search. CoRR, abs/2305.12217, 2023a. doi: 10.48550/arXiv.2305.12217. URL https://doi.org/10.48550/arXiv.2305.12217.
  69. Optimizing bi-encoder for named entity recognition via contrastive learning. In The Eleventh International Conference on Learning Representations, 2023b. URL https://openreview.net/forum?id=9EAQVEINuum.
  70. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022. doi: 10.48550/arXiv.2205.01068. URL https://doi.org/10.48550/arXiv.2205.01068.
  71. Position-aware attention and supervised data improve slot filling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.  35–45, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1004. URL https://aclanthology.org/D17-1004.
  72. Judging llm-as-a-judge with mt-bench and chatbot arena. CoRR, abs/2306.05685, 2023. doi: 10.48550/arXiv.2306.05685. URL https://doi.org/10.48550/arXiv.2306.05685.
  73. Universalner: Targeted distillation from large language models for open named entity recognition. CoRR, abs/2308.03279, 2023. doi: 10.48550/arXiv.2308.03279. URL https://doi.org/10.48550/arXiv.2308.03279.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Oscar Sainz (14 papers)
  2. Iker García-Ferrero (14 papers)
  3. Rodrigo Agerri (41 papers)
  4. Oier Lopez de Lacalle (19 papers)
  5. German Rigau (30 papers)
  6. Eneko Agirre (53 papers)
Citations (56)
X Twitter Logo Streamline Icon: https://streamlinehq.com