Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving a Class of Non-Convex Minimax Optimization in Federated Learning (2310.03613v1)

Published 5 Oct 2023 in cs.LG and cs.AI

Abstract: The minimax problems arise throughout machine learning applications, ranging from adversarial training and policy evaluation in reinforcement learning to AUROC maximization. To address the large-scale data challenges across multiple clients with communication-efficient distributed training, federated learning (FL) is gaining popularity. Many optimization algorithms for minimax problems have been developed in the centralized setting (\emph{i.e.} single-machine). Nonetheless, the algorithm for minimax problems under FL is still underexplored. In this paper, we study a class of federated nonconvex minimax optimization problems. We propose FL algorithms (FedSGDA+ and FedSGDA-M) and reduce existing complexity results for the most common minimax problems. For nonconvex-concave problems, we propose FedSGDA+ and reduce the communication complexity to $O(\varepsilon{-6})$. Under nonconvex-strongly-concave and nonconvex-PL minimax settings, we prove that FedSGDA-M has the best-known sample complexity of $O(\kappa{3} N{-1}\varepsilon{-3})$ and the best-known communication complexity of $O(\kappa{2}\varepsilon{-2})$. FedSGDA-M is the first algorithm to match the best sample complexity $O(\varepsilon{-3})$ achieved by the single-machine method under the nonconvex-strongly-concave setting. Extensive experimental results on fair classification and AUROC maximization show the efficiency of our algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xidong Wu (13 papers)
  2. Jianhui Sun (14 papers)
  3. Zhengmian Hu (23 papers)
  4. Aidong Zhang (49 papers)
  5. Heng Huang (189 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.