Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Best-Response Dynamics in Tullock Contests with Convex Costs (2310.03528v2)

Published 5 Oct 2023 in cs.GT and econ.TH

Abstract: We study the convergence of best-response dynamics in Tullock contests with convex cost functions (these games always have a unique pure-strategy Nash equilibrium). We show that best-response dynamics rapidly converges to the equilibrium for homogeneous agents. For two homogeneous agents, we show convergence to an $\epsilon$-approximate equilibrium in $\Theta(\log\log(1/\epsilon))$ steps. For $n \ge 3$ agents, the dynamics is not unique because at each step $n-1 \ge 2$ agents can make non-trivial moves. We consider the model proposed by Ghosh and Goldberg (2023), where the agent making the move is randomly selected at each time step. We show convergence to an $\epsilon$-approximate equilibrium in $O(\beta \log(n/(\epsilon\delta)))$ steps with probability $1-\delta$, where $\beta$ is a parameter of the agent selection process, e.g., $\beta = n2 \log(n)$ if agents are selected uniformly at random at each time step. We complement this result with a lower bound of $\Omega(n + \log(1/\epsilon)/\log(n))$ applicable for any agent selection process.

Citations (3)

Summary

We haven't generated a summary for this paper yet.